TÜV RHEINLAND ENERGY GMBH

Bericht über die Durchführung von Emissionsmessungen an der Anlage zum Lackieren von Getränkedosen bei der Ardagh Metal Beverage Germany GmbH in Weißenthurm für die Messobjekte CO, NO_x, Staub, Gesamt-C und O₂

> TÜV-Bericht Nr.: EuL/21257161/A Köln, 11.08.2023

> > www.umwelt-tuv.de

tre-service@de.tuv.com

Die TÜV Rheinland Energy GmbH ist mit der Abteilung Immissionsschutz für die Arbeitsgebiete:

- Bestimmung der Emissionen und Immissionen von Luftverunreinigungen und Emissionen von Geruchsstoffen;
- Überprüfung des ordnungsgemäßen Einbaus und der Funktion sowie Kalibrierung kontinuierlich arbeitender Emissionsmessgeräte einschließlich Systemen zur Datenauswertung und Emissionsfernüberwachung;
- Feuerraummessungen;
- Eignungsprüfung von Messeinrichtungen zur kontinuierlichen Überwachung der Emissionen und Immissionen sowie von elektronischen Systemen zur Datenauswertung und Emissionsfernüberwachung
- Bestimmung der Schornsteinhöhen und Immissionsprognosen für Schadstoffe und Geruchsstoffe;
- Bestimmung der Emissionen und Immissionen von Geräuschen und Vibrationen, Bestimmung von Schallleistungspegeln und Durchführung von Schallmessungen an Windenergieanlagen

nach DIN EN ISO/IEC 17025 akkreditiert.

Die Akkreditierung hat die DAkkS-Registriernummer: D-PL-11120-02-00.

Die <u>auszugsweise</u> Vervielfältigung des Berichtes bedarf der schriftlichen Genehmigung.

TÜV Rheinland Energy GmbH D-51105 Köln, Am Grauen Stein, Tel: 0221 806-5200, Fax: 0221 806-1349

Seite 2 von 35

Bericht über die Durchführung von Emissionsmessungen an der Anlage zum Lackieren von Getränkedosen bei der Ardagh Metal Beverage Germany GmbH in Weißenthurm für die Messobjekte CO, NO_x, Staub, Gesamt-C und O₂, Berichts-Nr.: EuL/21257161/A

Leerseite

Luftreinhaltung

Bericht über die Durchführung von Emissionsmessungen an der Anlage zum Lackieren von Getränkedosen bei der Ardagh Metal Beverage Germany GmbH in Weißenthurm für die Messobjekte CO, NO_X, Staub, Gesamt-C und O₂, Berichts-Nr. EuL/21257161/A

Seite 3 von 35

Bericht über die Durchführung von Emissionsmessungen an der Anlage zum Lackieren von Getränkedosen bei der Ardagh Metal Beverage Germany GmbH in Weißenthurm für die Messobjekte CO, NOx, Staub, Gesamt-C und O₂

Name der nach § 29b BlmSchG

bekannt gegebenen Stelle: TÜV Rheinland Energy GmbH

Befristung der Bekanntgabe: 03.03.2028

Berichtsnummer / Datum: EuL/21257161/A 11.08.2023

Betreiber: Ardagh Metal Beverage Germany

GmbH

Hauptstraße 170 56575 Weißenthurm

Standort: Ardagh Metal Beverage Germany

GmbH

Hauptstraße 170 56575 Weißenthurm

Kundennummer: 1115764

Messtermin: 24.05. – 25.05.2023

Berichtsumfang: insgesamt 35 Seiten

Anhang ab Seite 28

Anlagenzuordnung: TA Luft / 31. BlmSchV

Seite 4 von 35

Bericht über die Durchführung von Emissionsmessungen an der Anlage zum Lackieren von Getränkedosen bei der Ardagh Metal Beverage Germany GmbH in Weißenthurm für die Messobjekte CO, NO_X, Staub, Gesamt-C und O₂, Berichts-Nr.: EuL/21257161/A

Leerseite

Luftreinhaltung

Bericht über die Durchführung von Emissionsmessungen an der Anlage zum Lackieren von Getränkedosen bei der Ardagh Metal Beverage Germany GmbH in Weißenthurm für die Messobjekte CO, NO_X , Staub, Gesamt-C und O_2 , Berichts-Nr. EuL/21257161/A

Seite 5 von 35

Zusammenfassung

Anlage: Anlage zum Lackieren von Getränkedosen

Quellennummer: E 1000 (Thermoreaktor)

E 2000 (AD-Anlage)

Anlagenzustand: Es wurden je Anlage 6 Einzelmessungen bei maximal

betriebsüblicher Leistung vorgenommen.

Der angegebene maximale Messwert beschreibt den

höchsten Wert aus allen Messungen.

Tabelle 1: Quelle E 1000 (Thermoreaktor)

Mess- komponente y	Einheit	Maximaler Messwert y _{max} bezogen auf Bezugswert	Erw. Messunsi- cherheit (U _p , _{0,95})	y _{max} - U _{0,95}	y _{max} + U _{0,95}	Grenzwert
NOx	g/m³	0,04	0,001	0,04	0,05	0,1
СО	g/m³	0,006	0,0001	0,006	0,006	0,1
Staub	mg/m³	<0,3	0,3	<1	<1	3
Organische Stoffe, C	mg/m³	6,9	0,3	7	7	10
O ₂	Vol%	19,4	0,30	-	-	

Die Emissionswerte beziehen sich auf wasserdampffreies Abgas im Normzustand (273 K, 101,3 kPa).

Tabelle 2: Quelle E 2000 (AD-Anlage)

Mess- komponente y	Einheit	Maximaler Messwert y _{max} bezogen auf Bezugswert	Erw. Messunsi- cherheit (U _p , _{0,95})	y _{max} - U _{0,95}	y _{max} + U _{0,95}	Grenzwert
Staub	mg/m³	<0,3	0,3	<1	<1	3
Organische Stoffe, C	mg/m³	31,5	1,6	30	33	25

Die Emissionswerte beziehen sich auf wasserdampffreies Abgas im Normzustand (273 K, 101,3 kPa).

Seite 6 von 35

Bericht über die Durchführung von Emissionsmessungen an der Anlage zum Lackieren von Getränkedosen bei der Ardagh Metal Beverage Germany GmbH in Weißenthurm für die Messobjekte CO, NO_X, Staub, Gesamt-C und O₂, Berichts-Nr.: EuL/21257161/A

Leerseite

Luftreinhaltung

Bericht über die Durchführung von Emissionsmessungen an der Anlage zum Lackieren von Getränkedosen bei der Ardagh Metal Beverage Germany GmbH in Weißenthurm für die Messobjekte CO, NO_X , Staub, Gesamt-C und O_2 , Berichts-Nr. EuL/21257161/A

Seite 7 von 35

Inhalts	verzeichnis	Seite
Zusamn	nenfassung	5
1 Messa	ufgabe	9
1.1	Auftraggeber:	9
1.2	Betreiber:	9
1.3	Standort:	9
1.4	Anlage:	9
1.5	Datum der Messung:	9
1.6	Anlass der Messung:	9
1.7	Aufgabenstellung:	9
1.8	Messkomponenten und Messgrößen:	9
1.9	Ortsbesichtigung vor Messdurchführung:	10
1.10	Messplanabstimmung:	10
1.11	An der Messung beteiligte Personen:	10
1.12	Beteiligung weiterer Institute:	10
1.13	Fachlich Verantwortliche:	10
2 Beschi	reibung der Anlage / gehandhabte Stoffe	11
2.1	Bezeichnung der Anlage:	11
2.2	Beschreibung der Anlage	11
2.3	Beschreibung der Emissionsquellen nach Betreiberangaben	12
2.5	Betriebszeiten nach Betreiberangaben	12
2.6	Einrichtung zur Erfassung und Minderung der Emissionen	12
3 Beschi	reibung der Probenahmestelle	15
3.1	Lage des Messquerschnittes	15
3.2	Lage der Messpunkte im Messquerschnitt	16
3.2	Lage der Messpunkte im Messquerschnitt	18
4 Mess-	und Analysenverfahren, Geräte	19
4.1	Abgasrandbedingungen	19
4.2	Automatische Messverfahren	20
4.3	Manuelle Messverfahren für gas- und dampfförmige Emissionen:	23
4.4	Messverfahren für partikelförmige Emissionen	23
4.5	Besondere hochtoxische Abgasinhaltsstoffe:	23
4.6	Geruchsemissionen:	23
5 Betrieb	szustand der Anlage während der Messungen	24
5.1	Anlage	24
5.2	Abgasreinigungsanlagen	24
6 Zusam	menstellung der Messergebnisse und Diskussion	25
6.1	Bewertung der Betriebsbedingungen während der Messungen	25
6.2	Messergebnisse	25
6.3	Messunsicherheiten	27
6.4	Diskussion der Ergebnisse	27
7 Übersi	cht über den Anhang	27

Seite 8 von 35

Bericht über die Durchführung von Emissionsmessungen an der Anlage zum Lackieren von Getränkedosen bei der Ardagh Metal Beverage Germany GmbH in Weißenthurm für die Messobjekte CO, NO_X, Staub, Gesamt-C und O₂, Berichts-Nr.: EuL/21257161/A

Leerseite

Luftreinhaltung

Bericht über die Durchführung von Emissionsmessungen an der Anlage zum Lackieren von Getränkedosen bei der Ardagh Metal Beverage Germany GmbH in Weißenthurm für die Messobjekte CO, NO_X, Staub, Gesamt-C und O₂, Berichts-Nr. EuL/21257161/A

Seite 9 von 35

1 Messaufgabe

1.1 Auftraggeber: Ardagh Metal Beverage Germany GmbH

Hauptstraße 170 56575 Weißenthurm

1.2 Betreiber: Ardagh Metal Beverage Germany GmbH

Hauptstraße 170 56575 Weißenthurm

Ansprechpartner: Herr Wendel / Herr Lagemann

Telefon: 02637 607-225

1.3 Standort: Ardagh Metal Beverage Germany GmbH

Hauptstraße 170 56575 Weißenthurm

1.4 Anlage: Anlage nach Art. 10 der RL 2010/75/EU ge-

mäß Nr. 5.1.1.1, Verfahrensart G des An-

hangs 1 zur 4. BlmSchV.

Betriebstätten- oder Arbeitsstätten-Nr.: 4096531

Anlagen-Nr. gemäß Genehmigung: 10 (Branche 29300)

1.5 Datum der Messung: 24.05. – 25.05.2023 (für 09 / 2022)

Datum der letzten Messung: 12 / 2019 (für 09 / 2019)

Datum der nächsten Messung: 09 / 2025

1.6 Anlass der Messung: Messungen zur Überprüfung der Einhaltung

der Emissionsbegrenzungen.

1.7 Aufgabenstellung: Feststellung der Emissionen gemäß TA Luft /

31. BlmSchV und Genehmigungsbescheid.

Besonderheiten im Hinblick auf die Be-

triebsbedingungen:

Genehmigungsbehörde: Kreisverwaltung Mayen-Koblenz

Überwachungsbehörde: SGD Nord, Gewerbeaufsicht Koblenz

(1) Genehmigungsbescheid, Az.: 9709551/18 vom 11.08.1997

keine

Anordnung, Az.: 23/1-137 / A 51.0-

0055/07 Svh/Ham vom 07.03.2007

(2) Genehmigungsbescheid, Az.: BI-60-2019-33199 vom 12.11.2020

Grenzwerte: siehe Zusammenfassung

Ziffern des Bescheides: (2) I.3.: CO, NOx, Gesamt-C, Staub

Amtliche Messung: ja

1.8 Messkomponenten und Messgrößen: CO, NOX, Staub, Gesamt-C und O2 sowie

CO₂, Feuchte, Volumenstrom, Druck und

Temperatur

Seite 10 von 35

Bericht über die Durchführung von Emissionsmessungen an der Anlage zum Lackieren von Getränkedosen bei der Ardagh Metal Beverage Germany GmbH in Weißenthurm für die Messobjekte CO, NO_X , Staub, Gesamt-C und O_2 , Berichts-Nr.: EuL/21257161/A

1.9	Ortsbesichtigung vor	
	Messdurchführung:	□ durchgeführt am
		nicht durchgeführt, weil die Messstelle aus vorherigen Messungen bereits be- kannt ist
1.10	Messplanabstimmung:	mit dem Betreiber; die länderspezifische An meldung wurde am 20.04.2022 an die Fach behörde versendet
1.11	An der Messung beteiligte Personen:	Herr Stephan John (Projektleiter)
		weiteres fachkundiges Personal: Herr Jürgen Knoll
1.12	Beteiligung weiterer Institute:	keine
1.13	Fachlich Verantwortliche:	Frau Stefanie Schroers Gruppe I Nr. 1 (G, P, Sp) gemäß Anlage 1 zur 41. BImSchV
	Telefon-Nr.:	0221 806-4459
	Email-Adresse:	stefanie.schroers@de.tuv.com

Luftreinhaltung

Bericht über die Durchführung von Emissionsmessungen an der Anlage zum Lackieren von Getränkedosen bei der Ardagh Metal Beverage Germany GmbH in Weißenthurm für die Messobjekte CO, NO_X, Staub, Gesamt-C und O₂, Berichts-Nr. EuL/21257161/A

Seite 11 von 35

2 Beschreibung der Anlage / gehandhabte Stoffe

2.1 Bezeichnung der Anlage: Anlage zum Lackieren von Getränkedosen

2.2 Beschreibung der Anlage

Die Ardagh Metal Beverage Germany GmbH betreibt in Weißenthurm eine Fertigungsanlage zur Herstellung und Lackierung von Getränkedosen. Die Gesamtanlage besteht aus 3 Produktionslinien mit insgesamt 6 Öfen für die Trocknung des Innenlacks, 8 Öfen für die Trocknung des Außenlacks sowie einem Nachspritzofen. Die maximale Leistung der verschiedenen Produktionslinien stellt sich wie folgt dar:

Linie 182 (L2): 108000 Dosen/h
 Linie 183 (L3): 112500 Dosen/h
 Linie 184 (L4): 117000 Dosen/h

Nach der mechanischen Fertigung gelangen die Dosen nach entsprechender Vorbereitung (Waschen) in den Lackierbereich, in dem sowohl lösemittelhaltige Lacke als auch Wasserlacke eingesetzt werden. Die Außenlackierung der Dosen erfolgt im Rotationsverfahren über Lackierwalzen; die Innenlackierung wird im Spritzverfahren durchgeführt. Im Einzelnen besteht der Lackierbereich jeder Produktionslinie im Wesentlichen aus folgenden Teilbereichen:

- Außenlackieranlage
- Trockner
- Druckanlage
- Trockner
- Innenspritzanlage (1. Spritzung)
- Trockner
- Bodenspritzanlage
- Necker
- Innenspritzanlage (2. Spritzung, nur bei Linie 183 und 184)
- Außenlackieranlage

Während an Produktionslinie 183 sowohl 0,5 I - als auch 0,33 I - Dosen hergestellt werden können, können an Produktionslinie 182 ausschließlich 0,5 I - Dosen und an Produktionslinie 184 ausschließlich 0,33 I - Dosen gefertigt werden.

TÜV Rheinland Energy GmbH Luftreinhaltung

Seite 12 von 35

Bericht über die Durchführung von Emissionsmessungen an der Anlage zum Lackieren von Getränkedosen bei der Ardagh Metal Beverage Germany GmbH in Weißenthurm für die Messobjekte CO, NO_X, Staub, Gesamt-C und O₂,

Berichts-Nr.: EuL/21257161/A

Die lösemittelhaltige Abluft aus den Produktionslinien wird getrennt in eine "warme" und in eine "kalte" Abluftlinie.

Die "kalte" Abluft entsteht aus der Absaugung folgender Bereiche:

- Lackiermaschinen (Außen- und Innenlackierung)
- Transportbänder hinter den Lackiermaschinen
- Bedruckungsmaschinen

Die "warme" Abluft wird aus den Trockenöfen

- der Außen- und Innenlackierung
- der Bedruckung

abgesaugt.

Die "warme" Abluft wird zur Reinigung der Thermoreaktoranlage, die "kalte" Abluft der AD-Anlage zugeführt. Die gereinigten Abluftströme werden anschließend über Quelle E 1000 (Thermoreaktor) und Quelle E 2000 (AD-Anlage) abgeleitet.

2.3 Beschreibung der Emissionsquellen nach Betreiberangaben

Bezeichnung der Emissionsquelle: 2 Kamine

E 2000 Quelle: E 1000

(Thermoreaktor) (AD-Anlage)

Höhe über Grund: 18,5 m 18,5 m UTM-Koordinaten: 32U 32U

> 390023 / 5586426 390033 / 5586433

Bauausführung: Stahl

2.4 Angabe der laut Genehmigungsbescheid

> möglichen Einsatzstoffe: Lacke, Erdgas, Stahlblech

2.5 Betriebszeiten nach Betreiberangaben

> Gesamtbetriebszeit: ca. 7600 h/a täglich: ca. 24 h

wöchentlich: ca. 168 h

2.6 Einrichtung zur Erfassung und Minderung der Emissionen

2.6.1 Einrichtung zur Erfassung der Emissio-

geschlossene Anlage mit gerichteter Emissinen:

onsquelle

2.6.1.1 Art der Emissionserfassung: Saugzugventilatoren

Luftreinhaltung

Bericht über die Durchführung von Emissionsmessungen an der Anlage zum Lackieren von Getränkedosen bei der Ardagh Metal Beverage Germany GmbH in Weißenthurm für die Messobjekte CO, NO_X, Staub, Gesamt-C und O₂, Berichts-Nr. EuL/21257161/A

Seite 13 von 35

2.6.1.2 Ventilatorkenndaten:

Thermoreaktor

Bezeichnung: <u>1: VA1, Pos. 2.1</u> <u>2: VA2, Pos. 2.6</u>

Hersteller: Fa. Reitz, Höxter

Typ: RVK 12 / 2500-20 KXE 125-040015-00

 Serien-Nr.:
 65307
 138961-000

 Volumenstrom:
 138.000 m³/h
 24.000 m³/h

AD-Anlage

Bezeichnung: 3: VA3, Pos. 2.9 4: VA4, Pos. 2.9.1

Hersteller: Fa. Reitz, Höxter
Typ: RZE031-112022-00

 Serien-Nr.:
 97003291
 97003291/1

 Volumenstrom:
 67.000 m³/h
 67.000 m³/h

2.6.2 Einrichtung zur Verminderung der Emissionen:

Thermoreaktoranlage

Die Thermische Abluftreinigungsanlage besteht im Wesentlichen aus 5 Wärmerückgewinnungskammern, den eigentlichen "Thermoreaktoren", welche durch die Brennkammer (thermische Oxidation) untereinander verbunden sind. Die Wärmerückgewinnungskammern werden in bestimmter Reihenfolge von Wärmeabgabe auf Wärmespeicherung und umgekehrt geschaltet, um die Wärme des energiereichen aus der Brennkammer austretenden Reingases auf das eintretende Rohgas zu übertragen. Auf diese Weise wird das eintretende, mit organischen Schadstoffen belastete Rohgas auf ca. 750 °C aufgeheizt und nachfolgend in der Brennkammer, die mit Zusatzbrennern (Erdgas) ausgestattet ist, verbrannt.

Durch die 5 Wärmerückgewinnungskammern wird eine kontinuierliche Entsorgung der beiden Abluftströme erreicht.

Technische Daten

Hersteller: Langbein und Engelbracht, Bochum

Baujahr: 1985

Abluftmenge: max. 70000 Nm³/h

AD-Anlage

Die Anlage besteht im Wesentlichen aus:

- Feststofffilter
- 2 Adsorptionsräder (AD) (Parallelschaltung)
- 1 Wärmetauscher

Die lösemittelhaltige "kalte" Abluft der Produktionsanlagen wird in einem Rohgassammelsystem erfasst und durchströmt anschließend zur Abscheidung von Lackpartikeln den oben genannten Feststofffilter. Anschließend wird die entstaubte Abluft den Adsorptionsrädern zugeführt. Dort werden die enthaltenen Lösemittel adsorbiert. Die gereinigte Abluft wird anschließend ins Freie geleitet.

Die Adsorptionsräder bestehen jeweils aus einem zylindrischen Rotor mit einzelnen Adsorptionskammern. Der Rotor dreht sich um eine Achse mit ca. 1 bis 3 U/h.

TÜV Rheinland Energy GmbH Luftreinhaltung

Seite 14 von 35

Bericht über die Durchführung von Emissionsmessungen an der Anlage zum Lackieren von Getränkedosen bei der Ardagh Metal Beverage Germany GmbH in Weißenthurm für die Messobjekte CO, NO_X, Staub, Gesamt-C und O₂,

Berichts-Nr.: EuL/21257161/A

Zur Desorption verfügen die Adsorptionsräder jeweils über einen abgetrennten Desorptionssektor, den die einzelnen Adsorptionskammern entsprechend der Drehzahl des Rades durchlaufen.

Im Desorptionsbereich durchströmt Heißluft (max. 190 °C) das Adsorptionsmaterial und treibt so die angelagerten Lösemittel aus. Die mit Lösemitteln hochkonzentrierte Desorptionsluft (10000 m³/h) wird danach in das Rohgassammelsystem der "warmen" Abluft eingespeist und zusammen mit dieser im Thermoreaktor verbrannt.

Die anschließende Kühlung des Adsorptionsmaterials erfolgt im Kühlsektor, der dem Desorptionssektor nachgeschaltet ist. Als Kühlluft wird ein Teilstrom des Rohgases eingesetzt. Die erwärmte Kühlluft wird nach dem Kühlsektor in einem Luft-Luft-Wärmetauscher durch das Reingas des Thermoreaktors weiter hoch geheizt (max. 190 °C) und anschließend wiederum als Desorptionsluft durch den Desorptionssektor geführt.

Technische Daten

Hersteller: Langbein und Engelbracht, Bochum

1997 Baujahr:

Abluftmenge: max. 120.000 Nm³/h

max. 33 °C Ablufteintrittstemperatur:

Lösemittelkonzentration im Rohgas: ca. 375 mg/Nm³

Desorptionslufttemperatur: max. 190 °C

ca. 10.000 Nm3 Desorptionsluftmenge:

Aufkonzentration der Desorptionsluft: ≥ 1:10

Lösemittelbeladung der Desorptionsluft: ca. 6,4 g/Nm3 Reinluftwert: ca. 50 mg/Nm3

Adsorptionsmaterial: Zeolithe

2.6.3 Einrichtung zur Verdünnung des Abga-

> ses: keine

Luftreinhaltung

Bericht über die Durchführung von Emissionsmessungen an der Anlage zum Lackieren von Getränkedosen bei der Ardagh Metal Beverage Germany GmbH in Weißenthurm für die Messobjekte CO, NO_X, Staub, Gesamt-C und O₂, Berichts-Nr. EuL/21257161/A

Seite 15 von 35

3 Beschreibung der Probenahmestelle

3.1 Lage des Messquerschnittes

3.1.1 Lage und Abmessungen

Thermoreaktor

Die Messstelle befindet sich im senkrechten Abgaskamin nach Wärmetauscher.

Abmessungen des Messquerschnittes: ∅ 160 cm

gerade Einlaufstrecke: 0,3 m
gerade Auslaufstrecke: 9,5 m
Strecke bis zur Mündung: 9,5 m

Empfehlung ≥ 5·D_h Einlauf und 2·D_h

Auslauf (5·Dh vor Mündung): nicht erfüllt

3.1.2 Arbeitsfläche und Messbühne: Die Arbeitsfläche ist ausreichend groß und

die Messöffnungen sind gefahrlos zu erreichen. Eine ausreichende Rückenfreiheit zum Einführen der Entnahmesonden ist gegeben.

Ein Wetterschutz ist nicht vorhanden.

3.1.3 Messöffnungen

Anzahl der Messöffnungen: 2

Lage der Messöffnungen: in einer Ebene, 90° versetzt

Lichter Durchmesser: 69 mm Stutzenlänge: Bohrung

3.1.4 Strömungsbedingungen im Messquerschnitt

Winkel zwischen Gasstrom/Mittelachse

Abgaskanal < 15°: erfüllt keine negative lokale Strömung: erfüllt

Verhältnis von höchster zu niedrigster Ge-

schwindigkeit < 3:1: erfüllt

Mindestgeschwindigkeit (in Abhängigkeit

vom verwendeten Messverfahren): erfüllt

3.1.5 Zusammenfassende Beurteilung der Messbedingungen

Messbedingungen nach DIN EN 15259: Die Anforderungen werden eingehalten auch

wenn die Empfehlungen nicht erfüllt werden.

ergriffene Maßnahmen: Die Messpunkteanzahl für die Volumenstrom-

messung wurde von 8 auf 12 erhöht, da die Empfehlung an die gerade Strömungsstrecke nicht eingehalten wurde. Außerdem wurde ein Geschwindigkeitsprofil mit 8 Messpunkten untersucht. Beide Messungen erfüllen die Anforderungen an die Strömungsbedingungen und führen zu vergleichbaren Messwerten. Die Messung der partikelförmigen Komponenten erfolgte daher ohne Erhöhung der

Messpunkte.

TÜV Rheinland Energy GmbH Luftreinhaltung

Seite 16 von 35

Bericht über die Durchführung von Emissionsmessungen an der Anlage zum Lackieren von Getränkedosen bei der Ardagh Metal Beverage Germany GmbH in Weißenthurm für die Messobjekte CO, NO_X, Staub, Gesamt-C und O₂,

Berichts-Nr.: EuL/21257161/A

zu erwartende Auswirkungen auf das Er-

gebnis: Es wurde eine homogene Verteilung im

Querschnitt bestimmt. Daher sind keine Auswirkungen auf die Messunsicherheit zu er-

warten.

Empfehlungen und Hinweise zur Verbesse-

rung der Messbedingungen: keine

3.2 Lage der Messpunkte im Messquerschnitt

3.2.1 Darstellung der Lage der Messpunkte im Messquerschnitt:

Achsen: 2

Messpunkte je Achse: 4

Abstand der Messpunkte vom Kanalrand: 11 / 40 / 120 / 149 cm

3.2.2 Homogenitätsprüfung: nicht durchgeführt, weil eine Homogenitäts-

prüfung bereits vorliegt

Datum der Homogenitätsprüfung: 14.11.2019

936/21247300 Berichts-Nr.: Prüfinstitut: TÜV Rheinland

Ergebnis der Homogenitätsprüfung: Messung an einem beliebigen Punkt

Lage und Ort der Probenahmestellen haben sich gegenüber dem Zeitpunkt der Homogenitätsprüfung nicht geändert. An der Anlage erfolgten zudem keine relevanten Änderungen.

3.2.3 Komponentenspezifische Darstellung

Messkom- ponente	Anzahl der Messachsen	Anzahl der Messpunkte je Messachse	Homogeni- tätsprüfung durchgeführt	Beliebiger Messpunkt	Repräsenta- tiver Mess- punkt
NOx	1	1		\boxtimes	
CO	1	1			
Gesamt-C	1	1	\boxtimes	\boxtimes	
O ₂	1	1			
CO ₂	1	1			
partikelför- mige Kom- ponenten	s. 3.2.1	s. 3.2.1			
Geschwin- digkeit	s. 3.2.1	s. 3.2.1			

Die Homogenitätsuntersuchung wurde für die oben angegebenen Komponente erfolgreich durchgeführt. Damit ist von einer homogenen Verteilung aller Gase im Messquerschnitt auszugehen.

Luftreinhaltung

Bericht über die Durchführung von Emissionsmessungen an der Anlage zum Lackieren von Getränkedosen bei der Ardagh Metal Beverage Germany GmbH in Weißenthurm für die Messobjekte CO, NO_X, Staub, Gesamt-C und O₂, Berichts-Nr. EuL/21257161/A

Seite 17 von 35

3.1.1 Lage und Abmessungen

AD-Rad

Die Messstelle befindet sich im senkrechten Abgaskamin ca. 10 m über Bodenniveau auf einer Messbühne.

Abmessungen des Messquerschnittes: ∅ 180 cm

gerade Einlaufstrecke: 4,0m
gerade Auslaufstrecke: 5,0 m
Strecke bis zur Mündung: 5.0 m

Empfehlung ≥ 5·Dh Einlauf und 2·Dh

Auslauf (5-Dh vor Mündung): nicht erfüllt

3.1.2 Arbeitsfläche und Messbühne Die Arbeitsfläche ist ausreichend groß und

die Messöffnungen sind gefahrlos zu erreichen. Eine ausreichende Rückenfreiheit zum Einführen der Entnahmesonden ist gegeben.

Ein Wetterschutz ist nicht vorhanden.

3.1.3 Messöffnungen:

Anzahl der Messöffnungen: 2

Lage der Messöffnungen: in einer Ebene, 90° versetzt

Lichter Durchmesser: 80 mm
Stutzenlänge: Bohrung

3.1.4 Strömungsbedingungen im Messquerschnitt

Winkel zwischen Gasstrom/Mittelachse

Abgaskanal < 15°: erfüllt keine negative lokale Strömung: erfüllt

Verhältnis von höchster zu niedrigster Ge-

schwindigkeit < 3:1: erfüllt

Mindestgeschwindigkeit (in Abhängigkeit

vom verwendeten Messverfahren): erfüllt

3.1.5 Zusammenfassende Beurteilung der Messbedingungen

Messbedingungen nach DIN EN 15259: Die Anforderungen werden eingehalten auch

wenn die Empfehlungen nicht erfüllt werden.

ergriffene Maßnahmen: Die Messpunkteanzahl für die Volumenstrom-

messung wurde von 8 auf 12 erhöht, da die Empfehlung an die gerade Strömungsstrecke nicht eingehalten wurde. Außerdem wurde ein Geschwindigkeitsprofil mit 8 Messpunkten untersucht. Beide Messungen erfüllen die Anforderungen an die Strömungsbedingungen und führen zu vergleichbaren Messwerten. Die Messung der partikelförmigen Komponenten erfolgte daher ohne Erhöhung der

Messpunkte.

zu erwartende Auswirkungen auf das Er-

gebnis:

Es wurde eine homogene Verteilung im Querschnitt bestimmt. Daher sind keine Auswirkungen auf die Messunsicherheit zu erwarten.

TÜV Rheinland Energy GmbH Luftreinhaltung

Seite 18 von 35

Bericht über die Durchführung von Emissionsmessungen an der Anlage zum Lackieren von Getränkedosen bei der Ardagh Metal Beverage Germany GmbH in Weißenthurm für die Messobjekte CO, NO_X, Staub, Gesamt-C und O₂, Berichts-Nr.: EuL/21257161/A

3.2 Lage der Messpunkte im Messquerschnitt

3.2.1 Darstellung der Lage der Messpunkte im Messquerschnitt:

Achsen: 2

Messpunkte je Achse: 4

Abstand der Messpunkte vom Kanalrand: 12 / 45 / 135 / 168 cm

3.2.2 Homogenitätsprüfung: nicht durchgeführt, weil eine Homogenitäts-

prüfung bereits vorliegt

Datum der Homogenitätsprüfung: 14.11.2019
Berichts-Nr.: 936/21247300
Prüfinstitut: TÜV Rheinland

Ergebnis der Homogenitätsprüfung: Messung an einem beliebigen Punkt

Lage und Ort der Probenahmestellen haben sich gegenüber dem Zeitpunkt der Homogenitätsprüfung nicht geändert. An der Anlage erfolgten zudem keine relevanten Änderungen.

3.2.3 Komponentenspezifische Darstellung

Messkom- ponente	Anzahl der Messachsen	Anzahl der Messpunkte je Messachse	Homogeni- tätsprüfung durchgeführt	Beliebiger Messpunkt	Repräsenta- tiver Mess- punkt
Gesamt-C	1	1	\boxtimes	\boxtimes	
partikelför- mige Kom- ponenten	s. 3.2.1	s. 3.2.1			
Geschwin- digkeit	s. 3.2.1	s. 3.2.1			

Die Homogenitätsuntersuchung wurde für die oben angegebenen Komponente erfolgreich durchgeführt. Damit ist von einer homogenen Verteilung aller Gase im Messquerschnitt auszugehen.

Luftreinhaltung

Bericht über die Durchführung von Emissionsmessungen an der Anlage zum Lackieren von Getränkedosen bei der Ardagh Metal Beverage Germany GmbH in Weißenthurm für die Messobjekte CO, NO_X, Staub, Gesamt-C und O₂, Berichts-Nr. EuL/21257161/A

Seite 19 von 35

4 Mess- und Analysenverfahren, Geräte

4.1 Abgasrandbedingungen

4.1.1 Strömungsgeschwindigkeit

Ermittlungsmethode: Staudrucksonde mit Mikromanometer

Messverfahren: DIN EN ISO 16911, Juni 2013

Messeinrichtung: SI Special Instruments / LPU 3 Profi

Messbereich: 0 - 5000 Pa

Berechnungsverfahren: gemäß DIN EN ISO 16911 ohne Berücksich-

tigung von Wandeffekten

kontinuierliche Ermittlung: nein

4.1.2 Statischer Druck im Abgaskamin: Manometer nach 4.1.1

4.1.3 Luftdruck in Höhe der Probenahmestelle

Messeinrichtung: Greisinger / GPB 3300

4.1.4 Abgastemperatur: NiCr-/Ni-Thermoelement, Typ K

Messeinrichtung: Messdatenerfassung wie in 4.2.1.8

Messbereich: $0 - 1370^{\circ}\text{C}$

kontinuierliche Ermittlung: ja

4.1.5 Wasserdampfanteil im Abgas (Abgasfeuchte)

Messverfahren (Thermoreaktor): Adsorption an Silikagel und nachfolgende

gravimetrische Bestimmung gemäß DIN EN

14790, Mai 2017

Messeinrichtung: Kern / EW6200-2NM

Messbereich: 0 - 6200 g

Messverfahren (AD-Anlage): Ermittlung über psychrometrische Tempera-

turdifferenz mit NiCr-/Ni-Thermoelement

Typ K (2-Thermometermethode)

Messeinrichtung: Voltcraft / K 102

Messbereich: 0 - 1370°C

4.1.6 Abgasdichte: berechnet unter Berücksichtigung der Abgas-

bestandteile an Sauerstoff (O₂), Kohlendioxid (CO₂), Stickstoff (mit 0,933 % Argon), Abgasfeuchte (Wasserdampfanteil im Abgas) sowie der Abgastemperatur und Druckverhältnisse

im Kanal

4.1.7 Abgasverdünnung: nicht festgestellt

4.1.8 Volumenstrom

mittlere Abgasgeschwindigkeit: s. 4.1.1

Querschnittsfläche: Längenmessung der Messachsen und Stut-

zen mit einer Messstange, Abmessen der

Messstange mit Gliedermaßstab

Fläche der Volumenstrommesseinrichtung

zu Querschnittsfläche: < 5 %

Seite 20 von 35

Bericht über die Durchführung von Emissionsmessungen an der Anlage zum Lackieren von Getränkedosen bei der Ardagh Metal Beverage Germany GmbH in Weißenthurm für die Messobjekte CO, NO_X , Staub, Gesamt-C und O_2 , Berichts-Nr.: EuL/21257161/A

4.2	Automatische Messverfahren			
4.2.1	Messkomponente:	Kohlenmonoxid (CO)		
4.2.1.1	Messverfahren:	Bestimmung der Massenkonzent Kohlenmonoxid – Standardreferenz Nicht-dispersive Infrarotspektromet DIN EN 15058, Mai 2017	zverfahren:	
4.2.1.2	Analysator:	Horiba / PG-350 E Zertifizierung nach EN 15267-3, Einsatzfähigkeit des Geräts den mobilen Einsatz wurde verifiziert		
4.2.1.3	eingestellter Messbereich in ppm:	0 – 200		
4.2.1.4	Gerätetyp eignungsgeprüft:	siehe unter 4.2.1.2		
4.2.1	Messkomponente:	Stickstoffoxide (NO _x)		
4.2.1.1	Messverfahren:	Bestimmung der Massenkonzent Stickstoffoxiden – Standardreferenz Chemilumineszenz gemäß DIN EN 14792, Mai 2017		
4.2.1.2	Analysator:	Horiba / PG-350 E Zertifizierung EN 15267-3, Einsatzfähigkeit des den mobilen Einsatz wurde verifizie	Geräts für	
4.2.1.3	eingestellter Messbereich in ppm:	0 - 200		
4.2.1.4	Gerätetyp eignungsgeprüft:	siehe unter 4.2.1.2		
4.2.1	Messkomponente:	Sauerstoff (O ₂)		
4.2.1.1	Messverfahren:	Bestimmung der Volumenkonzentration vo Sauerstoff, Standardreferenzverfahren: Para magnetismus gemäß DIN EN 14789, Mai 2017		
4.2.1.2	Analysator:	Horiba / PG-350 E Zertifizierung EN 15267-3, Einsatzfähigkeit des den mobilen Einsatz wurde verifizie	Geräts für	
4.2.1.3	eingestellter Messbereich in Vol%:	0 - 25		
4.2.1.4	Gerätetyp eignungsgeprüft:	siehe unter 4.2.1.2		
4.2.1	Messkomponente:	Kohlendioxid (CO₂)		
4.2.1.1	Messverfahren:	NDIR / Hausverfahren in Anlehnu EN 15058, Mai 2017	ng an DIN	
4.2.1.2	Analysator:	Horiba / PG-350 E Zertifizierung EN 15267-3, Einsatzfähigkeit des den mobilen Einsatz wurde verifizie	Geräts für	
4.2.1.3	eingestellter Messbereich in Vol%:	0 - 20		
4.2.1.4	Gerätetyp eignungsgeprüft:	siehe unter 4.2.1.2		
	Beschreibung für CO, NO _X , O ₂ und CO ₂ v	on 4.2.1.5 bis 4.2.1.8		
4.2.1.5	Probenahme und Probenaufbereitung			
	Entnahmesonde:	Edelstahl, beheizt auf °C	180	
	maximale Eintauchtiefe:	jeweils ca. Kanalmitte		
	Staubfilter:	Quarzwatte, beheizt durch Abgas		
	Probengasleitung vor Gasaufbereitung:	beheizt auf °C	180	

Luftreinhaltung

Bericht über die Durchführung von Emissionsmessungen an der Anlage zum Lackieren von Getränkedosen bei der Ardagh Metal Beverage Germany GmbH in Weißenthurm für die Messobjekte CO, NO_X, Staub, Gesamt-C und O₂, Berichts-Nr. EuL/21257161/A

Seite 21 von 35

Probengasleitung vor Gasaufbereitung: Länge in m: 15
Probengasleitung nach Gasaufbereitung: Länge in m: 2

Messgasaufbereitung

Messgaskühler M & C / PSS 5

Temperatur geregelt auf: $\leq 4^{\circ}C$

4.2.1.6 Überprüfen von Null- und Referenzpunkt mit Prüfgasen

Nullgas: N_2 N_2

Mischprüfgas: NO, CO, CO₂ in N₂ O₂, Außenluft

Konzentration: 20,94

NO215 mg/m³CO191,9 mg/m³CO215,84 Vol.-%

Unsicherheit: in % 2 Flaschen ID-Nummer: 17234

Hersteller: Nippon Gases Herstelldatum: 20.02.2023

Stabilitätsgarantie in Monaten: 36 rückführbar zertifiziert: ja

Überprüfung des Zertifikates durch: TÜV Rheinland am: 02.03.2023

4.2.1.7 90%-Einstellzeit des gesamten Messaufbaus

Ermittelt durch Aufgabe von

Prüfgas in die Entnahmesonde: in s 40

4.2.1.8 Registrierung der Messwerte

mit einer Messwerterfassungsanlage

(Rechner), Fabrikat / Typ: Yokogawa / DX 112-3-2

Erfassungsprogramm (Software): Yokogawa / Excel

4.2.1.9 Maßnahmen zur Qualitätssicherung: Dichtheitsprüfung (Abweichung < 2,0%) durch

Prüfung von Null- und Referenzpunkt über das

gesamte System

Ergebnis der Überprüfung des Nullpunkts und des Referenzpunkts nach der Messung:

Thermoreaktor:

Komponente	NP-Drift	RP-Drift	
O ₂	0,15%	0,22%	
CO ₂	0,32%	0,63%	
NOx	0,00%	0,39%	
CO	0,16%	1,13%	
С	1,31%	1,31%	

AD-Anlage:

Komponente	NP-Drift	RP-Drift	
С	0,66%	0,66%	

Eine rechnerische Berücksichtigung der Nullund Referenzpunktdrift war nicht erforderlich.

TÜV Rheinland Energy GmbH Luftreinhaltung

Seite 22 von 35

Bericht über die Durchführung von Emissionsmessungen an der Anlage zum Lackieren von Getränkedosen bei der Ardagh Metal Beverage Germany GmbH in Weißenthurm für die Messobjekte CO, NO_X , Staub, Gesamt-C und O_2 , Berichts-Nr.: EuL/21257161/A

4.2.1	Messkomponente:		Gesamtkohlenstoff (C)			
4.2.1.1	Messverfahren / Norm:		Bestimmung der Massenkonzentration des gesamten gasförmigen organisch gebunde- nen Kohlenstoffs, kontinuierliches Verfahren mit dem Flammenionisationsdetektor (FID) gemäß DIN EN 12619, April 2013			
4.2.1.2	Analysator:		M & A / Thermo FID Eignungsprüfung auf Basis der BEP ohne Zertifizierung, Einsatzfähigkeit des Geräts für den mobilen Einsatz wurde verifiziert.			
4.2.1.3	Eingestellter Messbereich:		0 - 60 mg C/m³			
4.2.1.4	Gerätetyp eignungsgeprüft:		siehe unter 4.2.1.2			
4.2.1.5	Probenahme und Probenaufb	ereitung				
	Entnahmesonde:		Edelstahl, beheizt auf °C	180		
	maximale Eintauchtiefe:		jeweils ca. Kanalmitte			
	Staubfilter:		Quarzwatte, beheizt durch Abgas			
	Probengasleitung vor Gasauf	bereitung:	beheizt auf °C	180		
	Probengasleitung vor Gasauf	bereitung:	Länge in m: 18			
	Werkstoff der gasführenden 7	Teile:	Edelstahl, PTFE			
	Messgasaufbereitung:		nicht zutreffend			
4.2.1.6	Überprüfung von Null- und Re	eferenzpunkt m	nit Prüfgasen			
	Nullgas:		synthetische Luft			
	Prüfgas:		Propan als C in Luft			
	Konzentration:	in mg C/m³	52,0			
	Unsicherheit:	in %	2			
	Flaschen ID-Nummer:		17043			
	Hersteller: Herstelldatum:		Praxair			
	Stabilitätsgarantie in Monater	n:	24.06.2021 60			
	rückführbar zertifiziert:		ja			
	Überprüfung des Zertifikates	durch:	TÜV Rheinland			
	am:		16.12.2021			
	Prüfgas und Nullgas durch da Probenahmesystem incl. Son Messgasaufbereitung aufgeg	de und	ja			
4.2.1.7	Einstellzeit des. Messaufbaus (Prüfgas über die Entnahmes	_	40			
4.2.1.8	Messwerterfassungssystem:		Yokogawa / DX 112-3-2			
	Erfassungsprogramm (Softwa	are):	Yokogawa / Excel			

Luftreinhaltung

Bericht über die Durchführung von Emissionsmessungen an der Anlage zum Lackieren von Getränkedosen bei der Ardagh Metal Beverage Germany GmbH in Weißenthurm für die Messobjekte CO, NO_X, Staub, Gesamt-C und O₂, Berichts-Nr. EuL/21257161/A

Seite 23 von 35

4.3 Manuelle Messverfahren für gas- und

dampfförmige Emissionen: nicht zutreffend

4.4 Messverfahren für partikelförmige Emissionen

4.4.1 Messkomponente: Gesamtstaub

4.4.1.1 Messverfahren: Ermittlung der Staubmasse bei geringen

Staubgehalten;

manuelles gravimetrisches Verfahren gemäß

DIN EN 13284, Teil 1, Februar 2018

4.4.1.2 Probenahme und Probenaufbereitung

Rückhaltesystem für partikelförmige Stoffe

Filtergerät: Planfilterkopfgerät

Anordnung: Instack mit Krümmer zwischen Entnahme-

sonde und Filtergehäuse

Filtrationstemperatur in °C: Abgastemperatur

Wirkdurchmesser Entnahmesonde: siehe Tabelle, Anhang 2

Material Entnahmesonde:

Titan

Material Absaugrohr: Edelstahl
Material Filter: Quarzfaser

Filterdurchmesser: 50 mm

Absorptionssysteme für filtergängige Stoffe: nicht zutreffend

Absaugeinrichtung: Drehschieberpumpe, mind. 6 m³/h

mit Gaszähler G4

4.4.1.3 Behandlung der Filter und der Ablagerungen

Trocknungstemperatur / -zeit

vor der Beaufschlagung: 300 °C / mind. 1 h nach der Beaufschlagung: 160 °C / mind. 1 h

Rückgewinnung von Ablagerungen

vor dem Filter: nach jeder Messreihe

(mindestens einmal pro Tag)

Konditionierung im Wägeraum (vor / nach): 24 h / 24 h (Exsikkator)

Waage / Hersteller: XPE 205 / Mettler Toledo

Köln

Standort Analysenlabor:

4.4.1.4 Aufbereitung und Analyse der

Filter und Absorptionslösungen: nicht zutreffend

Die Angaben zur Einhaltung der isokinetischen Bedingungen finden sich in Anhang 2.

4.5 Besondere hochtoxische Abgasinhalts-

stoffe: nicht zutreffend

4.6 Geruchsemissionen: nicht zutreffend

Seite 24 von 35

Bericht über die Durchführung von Emissionsmessungen an der Anlage zum Lackieren von Getränkedosen bei der Ardagh Metal Beverage Germany GmbH in Weißenthurm für die Messobjekte CO, NO_X, Staub, Gesamt-C und O₂,
Berichts-Nr.: EuL/21257161/A

5 Betriebszustand der Anlage während der Messungen

5.1 Anlage

Betriebsweise: normaler Maximalbetrieb

Durchsatz / Leistung:

24.05.23	Linie 2		5.23 Linie 2 Linie 3		Linie 4		Lösemittel
Uhrzeit	Dosen Stk / h	Lösemittel kg/h	Dosen Stk / h	Lösemittel kg/h	Dosen Stk / h	Lösemittel kg/h	gesamt kg/h
11:30-12:00	108429	63,0	69943	31,6	77486	42,2	136,8
12:05-12:35	104143	60,5	106029	47,9	105257	57,3	165,7
12:40-13:10	104143	60,5	122229	55,2	68229	37,2	152,9
13:15-13:45	86229	50,1	105000	47,4	88286	48,1	145,6
13:50-14:20	92314	53,6	88971	40,2	107914	58,8	152,6
14:25-14:55	106286	61,8	112286	50,7	110914	60,4	172,9

25.05.23	Linie 2		05.23 Linie 2 Linie 3		Linie 4		Lösemittel
Uhrzeit	Dosen Stk / h	Lösemittel kg/h	Dosen Stk / h	Lösemittel kg/h	Dosen Stk / h	Lösemittel kg/h	gesamt kg/h
10:57-11:27	99943	58,1	114686	51,8	103629	56,4	166,3
11:31-12:01	108514	63,1	112714	50,9	97457	53,1	167,1
12:06-12:36	110143	64,0	72086	32,6	73543	40,0	136,6
12:40-13:10	93257	54,2	105086	47,5	57771	31,5	133,1
13:15-13:45	99086	57,6	112029	50,6	92486	50,4	158,6
13:50-14:20	115200	66,9	114771	51,9	100457	54,7	173,5

Einsatzstoffe / Brennstoffe: Stahlblech / Lack
Produkte: lackierte Dosen

charakteristische Betriebsgrößen: s. Tabelle Durchsatz / Leistung

Abweichungen von genehmigter bzw. be-

stimmungsgemäßer Betriebsweise: nicht festgestellt

besondere Vorkommnisse: keine

5.2 Abgasreinigungsanlagen

Betriebsdaten: s. 2.6.2

Betriebstemperaturen: RTO: 820°C Brennkammertemperatur

AD-Anlage:185°C Desorptionstemperatur

emissionsbeeinflussende Parameter: RTO: Brennkammertemperatur

AD-Anlage: Desorptionstemperatur /

Geschwindigkeit

Besonderheiten der Abgasreinigung: keine

Abweichungen von bestimmungs-

gemäßer Betriebsweise: nicht festgestellt

besondere Vorkommnisse: keine

Luftreinhaltung

Bericht über die Durchführung von Emissionsmessungen an der Anlage zum Lackieren von Getränkedosen bei der Ardagh Metal Beverage Germany GmbH in Weißenthurm für die Messobjekte CO, NO_X , Staub, Gesamt-C und O_2 , Berichts-Nr. EuL/21257161/A

Seite 25 von 35

6 Zusammenstellung der Messergebnisse und Diskussion

6.1 Bewertung der Betriebsbedingungen während der Messungen

Während der Messungen wurde die Anlage im bestimmungsgemäßen Betrieb bei normaler maximaler Leistung betrieben (siehe Abschnitt 5.1).

Die Betriebsbedingungen während der Messungen entsprachen dem Zustand der höchsten Emissionen.

6.2 Messergebnisse

Thermorreaktor (Quelle E1000)

Brennstoff				Erdg	as H				
Datum	2023	25.05. 25.05. 25.05. 25.05. 25.05. 25.05.							
Messzeitraum	von	10:57	11:31	12:06	12:40	13:15	13:50		
viesszeittautti	bis	11:27	12:01	12:36	13:10	13:45	14:20		
Betriebs zustand	Last			Volli	ast 1)				
Luftdruck	hPa	1017	1017	1017	1017	1017	1017		
Abgastemperatur	°C	166	166	168	169	170	171		
O ₂ -Konzentration, trocken	Vol%	19,3	19,3	19,3	19,4	19,4	19,4		
CO ₂ -Konzentration, trocken	Vol%	1,0	1,0	1,0	1,0	0,9	0,9		
Abgasfeuchte (f)	m³/m³	0,048	0,048	0,048	0,048	0,048	0,048		
Abgas volumens trom (n,tr)	m³/h	46.600	46.600	46.600	46.600	46.600	46.600		

n,tr w asserdampffreies Abgas, bezogen auf 273 K und 101,3 kPa

f / tr im feuchten Abgas / bez. auf trockenes Abgas

1) vorgefundene maximale Anlagenleistung

Brennstoff					Erdg	as H		
Datum		2023	25.05.	25.05.	25.05.	25.05.	25.05.	25.05.
Messzeitraum		von	10:57	11:31	12:06	12:40	13:15	13:50
Messzenraum		bis	11:27	12:01	12:36	13:10	13:45	14:20
Betriebszustand		Last			Volli	ast ¹⁾		
NO _x -Konzentration als NO	(n, tr)	g/m³	0,03	0,02	0,02	0,02	0,02	0,02
NO _x -Konzentration als NO ₂	(n, tr)	g/m³	0,04	0,04	0,04	0,04	0,03	0,04
Erw. Messunsicherheit U _{0,95}		g/m³	0,001	0,001	0,001	0,001	0,001	0,001
NO _X -Grenzwert		g/m³	0,1					
NO _X -Massenstrom		kg/h	2,20 2,14 2,12 1,94 1,83					2,03
CO-Konzentration	(n, tr)	g/m³	0,006	0,005	0,006	0,004	0,005	0,003
Erw. Messunsicherheit U _{0,95}		g/m³	0,0001	0,0001	0,0001	0,0001	0,0001	0,00009
CO-Grenzwert		g/m³		•	0	,1	•	
CO-Massenstrom		kg/h	0,292	0,244	0,288	0,220	0,262	0,148
Gesamt-C-Konzentration	(n, tr)	mg/m³	6,9	6,1	5,9	5,3	4,3	4,3
Erw. Messunsicherheit U0,95		mg/m³	0,3	0,2	0,2	0,2	0,1	0,1
Gesamt-C-Grenzwert		mg/m³			1	0		
Gesamt-C-Massenstrom		kg/h	0,322	0,288	0,278	0,252	0,204	0,201
Staub-Konzentration	(n, tr)	mg/m³	<0,3	<0,3	<0,3	<0,3	<0,3	<0,3
Erw. Messunsicherheit U _{0,95}		mg/m³	0,2	0,2	0,2	0,2	0,3	0,2
Staub-Grenzwert		mg/m³				3		•
Staub-Massenstrom		kg/h	<0,014	<0,014	<0,015	<0,015	<0,015	<0,015

n,tr wasserdampffreies Abgas, bezogen auf 273 K und 101,3 kPa

n,f feuchtes Abgas, bezogen auf 273 K und 101,3 kPa

vorgefundene maximale Anlagenleistung

- $NOx = NO + NO_2$

Seite 26 von 35

Bericht über die Durchführung von Emissionsmessungen an der Anlage zum Lackieren von Getränkedosen bei der Ardagh Metal Beverage Germany GmbH in Weißenthurm für die Messobjekte CO, NO_X, Staub, Gesamt-C und O₂,
Berichts-Nr.: EuL/21257161/A

AD-Anlage (Quelle E2000)

Medium		Abluft						
Datum	2023	24.05. 24.05. 24.05. 24.05. 24.05. 24						
Messzeitraum	von	11:30	12:05	12:40	13:15	13:50	14:25	
Wesszeitlauffi	bis	12:00	12:35	13:10	13:45	14:20	14:55	
Betriebszustand	Last	Volllast 1)						
Luftdruck	hPa	1015	1015	1015	1015	1015	1015	
Abgastemperatur	°C	31	32	32	31	32	32	
O ₂ -Konzentration, trocken	Vol%	20,94	20,94	20,94	20,94	20,94	20,94	
CO ₂ -Konzentration, trocken 2)	Vol%	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1	
Abgasfeuchte (f)	m³/m³	0,010	0,010	0,010	0,010	0,010	0,010	
Abgas volumens trom (n,tr)	m³/h	66.300	66.300	66.300	66.300	66.300	66.300	

w asserdampffreies Abgas, bezogen auf 273 K und 101,3 kPa n,tr

f / tr $im\,feuchten\,Abgas\,/\,bez.\,auf\,trockenes\,Abgas$ vorgefundene maximale Anlagenleistung

Gesamt-C-Konzentration	(n, tr)	mg/m³	26,6	29,9	29,0	26,5	29,9	31,5
Erw. Messunsicherheit U0,95		mg/m³	1,4	1,7	1,7	1,5	1,5	1,6
Gesamt-C-Grenzwert		mg/m³			2	5		
Gesamt-C-Massenstrom		kg/h	1,77	1,99	1,93	1,76	1,99	2,09
Staub-Konzentration	(n, tr)	mg/m³	<0,3	<0,3	<0,3	<0,3	<0,3	<0,3
Emir Managementals and attitude			0.0	0.0	0.0	0.0	0.0	0.0

						1,5	1,6
•	mg/m³			2	5		•
•	kg/h	1,77	1,99	1,93	1,76	1,99	2,09
(n, tr)	mg/m³	<0,3	<0,3	<0,3	<0,3	<0,3	<0,3
	mg/m³	0,3	0,3	0,3	0,3	0,3	0,3
	mg/m³			3	3		
•	kg/h	<0,022	<0,022	<0,022	<0,022	<0,022	<0,022
	(n, tr)	kg/h (n, tr) mg/m³ mg/m³ mg/m³	kg/h 1,77 (n, tr) mg/m³ <0,3 mg/m³ 0,3 mg/m³	kg/h 1,77 1,99 (n, tr) mg/m³ <0,3 <0,3 mg/m³ 0,3 0,3 mg/m³ 0,3 0,3	kg/h 1,77 1,99 1,93 (n, tr) mg/m³ <0,3 <0,3 <0,3 (0,3 mg/m³ 0,3 0,3 0,3 mg/m³ (0,3 mg/m³ 0,3 0,3 (0,3 mg/m³ 0,3 (0,3 mg/m² 0,3 (0,3 mg/m² 0,3 mg/m² 0,3 (0,3 mg/m² 0	kg/h 1,77 1,99 1,93 1,76 (n, tr) mg/m³ <0,3 <0,3 <0,3 <0,3 mg/m³ 0,3 0,3 0,3 0,3 mg/m³ 3 3 3	kg/h 1,77 1,99 1,93 1,76 1,99 (n, tr) mg/m ³ <0,3 <0,3 <0,3 <0,3 <0,3 <0,3 <0,3 <0,3 (n, tr) mg/m ³ 0,3 0,3 0,3 0,3 (n, tr) mg/m ³ 3

w asserdampffreies Abgas, bezogen auf 273 K und 101,3 kPa n,tr

n,f feuchtes Abgas, bezogen auf 273 K und 101,3 kPa

vorgefundene maximale Anlagenleistung

Die Einzelergebnisse und Messprotokolle befinden sich im Anhang.

Luftreinhaltung

Bericht über die Durchführung von Emissionsmessungen an der Anlage zum Lackieren von Getränkedosen bei der Ardagh Metal Beverage Germany GmbH in Weißenthurm für die Messobjekte CO, NO_X, Staub, Gesamt-C und O₂, Berichts-Nr. EuL/21257161/A

Seite 27 von 35

6.3 Messunsicherheiten

siehe unter Zusammenfassung Seite 5

Die Messunsicherheiten werden bei allen Komponenten rechnerisch ermittelt. Hierbei werden die Vorgaben der komponentenspezifischen Normen berücksichtigt. Bei diskontinuierlich gemessenen Komponenten ist die Messunsicherheit immer eine Kombination der Messunsicherheiten von Probenahme und Analytik.

6.4 Diskussion der Ergebnisse

Während der Messungen wurden die Anlagen im bestimmungsgemäßen Betrieb bei normaler Maximalleistung betrieben. Die Anlagenauslastung ist anhand der unter 5.1 beschriebenen Produktionsdaten nachvollziehbar.

Die Einzelergebnisse und Messprotokolle befinden sich im Anhang.

Unter Berücksichtigung der Messgenauigkeit der angewandten Messverfahren und der vorgefundenen Betriebsweise der Anlage sind die Ergebnisse plausibel.

Die Messergebnisse entsprechen den Ergebnissen an vergleichbaren Anlagen und korrelieren mit den angegebenen Betriebszuständen.

Die Prüfergebnisse beziehen sich auf die untersuchte Anlage im beschriebenen Zustand.

Abteilung Immissionsschutz / Luftreinhaltung (EuL)

Bearbeiter Fachlich Verantwortliche

Stephan John

Köln, 11.08.2023

EuL/21257161/A

Stefanie Schroers

S. Schoes

7 Übersicht über den Anhang

A1: Abgasrandbedingungen

A2: Auswertung der Schadstoffmessungen

A3: Grafische Darstellung des zeitlichen Verlaufs kontinuierlich gemessener Komponenten

A4: Abkürzungen

Seite 28 von 35

Bericht über die Durchführung von Emissionsmessungen an der Anlage zum Lackieren von Getränkedosen bei der Ardagh Metal Beverage Germany GmbH in Weißenthurm für die Messobjekte CO, NO_X, Staub, Gesamt-C und O₂, Berichts-Nr.: EuL/21257161/A

Anhang A1: Abgasrandbedingungen

Thermoreaktor (Quelle E1000)

Verteilung der Geschwindigkeiten im Messnetz bei 12 und 8 Punkten

Messung Nr.	1	2
Last	Volllast	Volllast
Einheit	m/s	m/s
Punkt 1	13,8	10,8
Punkt 2	8,9	9,9
Punkt 3	9,6	10,2
Punkt 4	10,2	11,6
Punkt 5	10,2	11,5
Punkt 6	12,4	9,7
Punkt 7	12,9	10,6
Punkt 8	9,7	11,9
Punkt 9	9,2	
Punkt 10	9,4	
Punkt 11	10,4	
Punkt 12	12,3	

Berechnung des Hauptvolumenstroms im Kanal:								
Firma	Ardagh							
Anlage	Thermoreakt	or E1000						
Messstelle	Kamin							
Messtag		25.05.2023	25.05.2023					
Messung	Nr.	1	2					
Betriebszustand der Anlage		Volllast	Volllast					
Messbeginn	Uhr	9:15	9:15					
Mittlere Abgastemperatur	°C	163	163					
desgleichen absolut	K	436	436					
Luftdruck	hPa	1017	1017					
statische Druckdifferenz	∆ hPa	-0,2	-0,2					
absoluter Druck	hPa	1017	1017					
Sauerstoffkonzentration	Vol%	19,3	19,3					
Kohlendioxidkonzentration	Vol%	0,9	0,9					
Abgasfeuchte (f _f) *	m³/m³	0,048	0,048					
Wassergehalt bez. auf trockenes Abgas	g/m³	40,4	40,4					
Dichte (n,f)	kg/m³	1,273	1,273					
Dichte Kanalzustand (t,p,f)	kg/m³	0,800	0,800					
Mittlerer Wurzelw ert d. dyn. Druck	√Pa	6,81	6,83					
mittlere Gasgeschw indigkeit	m/s	10,8	10,8					
Kanalquerschnitt	m²	2,011	2,011					
Faktor Volumenstrommessung		1	1					
Hauptvolumenstrom (t,p,f)	m³/s	21,7	21,7					
desgleichen stündlich (t,p,f)	m³/h	78.000	78.200					
desgleichen (n,f)	m³/h	49.000	49.100					
desgleichen (n,tr)	m³/h	46.600	46.700					

^{*} adsorptive Feuchtemessung entspr. Auffang-Wirkungsgrad korrigiert

t,p,f = Betriebszustand

n,f = bezogen auf Normzustand (273 K, 1013 hPa) feuchtes Abgas

n,tr = bezogen auf Normzustand (273 K, 1013 hPa) trockenes Abgas

Luftreinhaltung

Bericht über die Durchführung von Emissionsmessungen an der Anlage zum Lackieren von Getränkedosen bei der Ardagh Metal Beverage Germany GmbH in Weißenthurm für die Messobjekte CO, NO_X , Staub, Gesamt-C und O_2 , Berichts-Nr. EuL/21257161/A

Seite 29 von 35

Tabelle Anhang: Bestimmung der Feuchte (H₂O)

Firma		Ardagh
Anlage		Thermoreaktor E1000
Messstag		25.05.2023
Messung	Nr.	1
Betriebszustand		Volllast
Messbeginn	Uhr	09:15
Messende	Uhr	09:45
Abgesaugtes Teilgasvolumen		trockene Gasuhr
Dauer der Probenahme	h:min	00:30
Stand der Gasuhr am Ende	m³	0,0598
Stand der Gasuhr am Anfang	m³	0,000
Abges. Teilgas volumen (t,p,tr)	m³	0,0598
Korrekturfaktor der Gasuhr		1,019
Mittl. Temperatur an der Gasuhr	°C	34
Desgl. in abs. Temperaturgraden	K	307
Barometerstand	hPa	1017
Stat. Druckdifferenz an der Gasuhr	hPa	0
Wasserdampfpartialdruck	hPa	52
Korr. Druck an der Gasuhr	hPa	1017
Abges. Teilgas volumen (n,tr)	m³	0,0545
Masse, unbeladen	g	934,5
Masse, beladen	g	936,7
Massenkonzentration und -strom	•	
gefundene Masse H ₂ O in der Probe	g	2,2
Feuchte (Konzentration, tr)	g/m³	40,38
Feuchte (Konzentration, tr) *	m³/m³	0,051
Feuchte (Konzentration, f) *	m³/m³	0,048

^{*)} Der Wirkungsgrad der Adsorption wurde berücksichtigt t,p,tr = bezogen auf Betriebszustand ohne Feuchteanteil

f = bezogen auf feuchtes Abgas

tr = bezogen auf trockenes Abgas

Seite 30 von 35

Bericht über die Durchführung von Emissionsmessungen an der Anlage zum Lackieren von Getränkedosen bei der Ardagh Metal Beverage Germany GmbH in Weißenthurm für die Messobjekte CO, NO_X, Staub, Gesamt-C und O₂,
Berichts-Nr.: EuL/21257161/A

AD-Anlage (Quelle E2000)

Verteilung der Geschwindigkeiten im Messnetz bei 12 und 8 Punkten

Messung Nr.	1	2
Last	Volllast	Volllast
Einheit	m/s	m/s
Punkt 1	11,3	10,2
Punkt 2	10,1	8,6
Punkt 3	9,2	7,5
Punkt 4	7,5	7,3
Punkt 5	7,6	8,9
Punkt 6	6,9	7,2
Punkt 7	9,4	7,9
Punkt 8	7,1	7,2
Punkt 9	6,3	
Punkt 10	7,2	
Punkt 11	7,2	
Punkt 12	7,3	

Berechnung des Hauptvolumenst	roms im Kar	nal:				
Firma	Ardagh					
Anlage	AD Anlage E	2000				
Messstelle	Kamin					
Messtag		24.05.2023	24.05.2023			
Messung	Nr.	1	2			
Betriebszustand der Anlage		Volllast	Volllast			
Messbeginn	Uhr	9:10	9:10			
Mittlere Abgastemperatur	°C	29	29,3			
desgleichen absolut	K	302	302,3			
Luftdruck	hPa	1015	1015			
statische Druckdifferenz	∆ hPa	-0,3	-0,3			
absoluter Druck	hPa	1015	1015			
Sauerstoffkonzentration	Vol%	20,9	20,9			
Kohlendioxidkonzentration	Vol%	0,0	0,0			
Abgasfeuchte (f _f) *	m³/m³	0,010	0,010			
Wassergehalt bez. auf trockenes Abgas	g/m³	8,0	8,0			
Dichte (n,f)	kg/m³	1,288	1,288			
Dichte Kanalzustand (t,p,f)	kg/m³	1,166	1,166			
Mittlerer Wurzelw ert d. dyn. Druck	√Pa	6,17	6,18			
mittlere Gasgeschw indigkeit	m/s	8,1	8,1			
Kanalquerschnitt	m²	2,545	2,545			
Faktor Volumenstrommessung		1	1			
Hauptvolumenstrom (t,p,f)	m³/s	20,6	20,6			
desgleichen stündlich (t,p,f)	m³/h	74.100	74.100			
desgleichen (n,f)	m³/h	67.000	67.100			
desgleichen (n,tr)	m³/h	66.300	66.400			

^{*} adsorptive Feuchtemessung entspr. Auffang-Wirkungsgrad korrigiert

t,p,f = Betriebszustand

n,f = bezogen auf Normzustand (273 K, 1013 hPa) feuchtes Abgas

n,tr = bezogen auf Normzustand (273 K, 1013 hPa) trockenes Abgas

Luftreinhaltung

Bericht über die Durchführung von Emissionsmessungen an der Anlage zum Lackieren von Getränkedosen bei der Ardagh Metal Beverage Germany GmbH in Weißenthurm für die Messobjekte CO, NO_X , Staub, Gesamt-C und O_2 , Berichts-Nr. EuL/21257161/A

Seite 31 von 35

Anhang A2: Auswertung der Schadstoffmessungen

Tabelle Anhang: Auswertung der Staubemissionsmessungen

Firma		Ardagh										
Anlage		Thermoreal	ktor E1	000								
Messstelle		Kamin										
Messtag		25.05.20)23	25.05.2023	2	25.05.2023	25.0	05.2023	2	25.05.2023	2	25.05.2023
Messung	Nr.	1		2		3		4		5		6
Volumenstrom-Messung	Nr.	1		1		1		1		1		1
Lastzustand		Volllas	st	Volllast		Volllast	V	olllast		Volllast		Volllast
Messbeginn	Uhr	10:57	,	11:31		12:06	1	2:40		13:15		13:50
Messende	Uhr	11:27	,	12:01		12:36	1	3:10		13:45		14:20
HAUPTVOLUMENSTROM			•									
Temperatur (im Mittel)	°C	163		163		163		163		163		163
desgleichen absolut	к	436		436		436		436		436		436
Barometerstand	hPa	1017		1017		1017		1017		1017		1017
statische Druckdifferenz	hPa	0		0		0		0		0		0
absoluter Druck im Kanal	hPa	1017		1017		1017		1017		1017		1017
Sauerstoffkonzentration	Vol%	19,3		19,3		19,3		19,3		19,3		19,3
Kohlendioxidkonzentration	Vol%	0,9		0,9		0,9		0,9		0,9		0,9
Feuchte (n,f)	m³/m³	0,048	3	0,048		0,048	(0,048		0,048		0,048
Wassergehalt bez. auf trockenes Abgas	g/m³	40,4		40,4		40,4		40,4		40,4		40,4
Dichte (n,f)	kg/m³	1,273	3	1,273		1,273	1	,273		1,273		1,273
Dichte (t,p,f)	kg/m³	0,800)	0,800		0,800	(0,800		0,800		0,800
Mittlerer Wurzelwert d. dyn. Drucks	√Pa	6,8		6,8		6,8		6,8		6,8		6,8
Mittlere Gasgeschwindigkeit	m/s	10,8		10,8		10,8		10,8		10,8		10,8
Kanalquerschnitt	m²	2,01		2,01		2,01		2,01		2,01		2,01
Hauptvolumenstrom (t,p,f)	m³/s	21,7		21,7		21,7		21,7		21,7		21,7
desgleichen stündlich (t,p,f)	m³/h	78.000	0	78.000		78.000	7	8.000		78.000		78.000
bz. auf Normzustand fe.(n,f)	m³/h	49.000	0	49.000		49.000	4	9.000		49.000		49.000
bz. auf Normzustand tr.(n,tr)	m³/h	46.600	0	46.600		46.600	4	6.600		46.600		46.600
ABGESAUGTES TEILGASVOLUMEN												
Dauer der Absaugung	h:min	00:30)	00:30		00:30	(00:30		00:30		00:30
Temperatur an der Gasuhr	°C	33		34		34		35,5		35		35
statischer Druck an der Gasuhr	hPa	0		0		0		0		0		0
Sondendurchmesser	mm	11		11		11		11		11		11
Teilgasvolumen (t,p,tr)	m³	1,279)	1,285		1,268	1	,278		1,266		1,275
Korrekturfaktor der Gasuhr		0,987	,	0,987		0,987	(,987		0,987		0,987
bz. auf Normzustand tr.(n,tr)	m³	1,131		1,132		1,117	1	,121		1,112		1,120
Isokinetisches Verhältnis	%	103		103		101		102		101		102
MASSENKONZENTRATION- UND STROM				,								
Staubmasse, Filter	mg	< 0,3	<	0,3	<	0,3	<	0,3	<	0,3	<	0,3
Staubmasse vor Filter	mg	< 0,05	<	0,05	<	0,05	<	0,05	<	0,05	<	0,05
Staubmasse, gesamt	mg	< 0,3	<		<	0,3	<	0,3	<	0,3	<	0,3
Gesamtleerprobe, Feldblindwert	mg	< 0,35	<	,	<	0,35		0,35	<	0,35	<	0,35
bezogen auf das Teilgas volumen (Norm, tr)	mg/m³	< 0,31	<		<	0,31		0,31	<	0,31	<	0,31
Blindwert in Relation zum Grenzwert	%	< 10,3	<		<	10,4		10,4	<	10,5	<	10,4
Blindwert in Relation zum Messwert	%	< 100	<		<	101		101	<	101	<	101
Sauerstoffgehalt im Abgas	Vol%	19,26	_	19,29		19,32		9,37	<u> </u>	19,37		19,37
Massenstrom	kg/h	< 0,014	< ا		<	0,015	< (0,015	<	0,015	<	0,015
Staubkonzentration (n,f)	mg/m³	< 0,29	<	,	<	0,29		0,29	<	0,29	<	0,29
Staubkonzentration (n,tr)	mg/m³	< 0,31	<	0,31	<	0,31	<	0,31	<	0,31	<	0,31

In der Tabelle sind gerundete Rechenwerte angegeben, so dass sich Abweichungen zur Darstellung in Kapitel 6 ergeben können.

t,p,f = Betriebszustand

n,f = bezogen auf Normzustand (273 K, 1013 hPa) feuchtes Abgas

n,tr = bezogen auf Normzustand (273 K, 1013 hPa) trockenes Abgas

t,p,tr = Gasuhrzustand nach Abgastrocknung

Seite 32 von 35

Bericht über die Durchführung von Emissionsmessungen an der Anlage zum Lackieren von Getränkedosen bei der Ardagh Metal Beverage Germany GmbH in Weißenthurm für die Messobjekte CO, NO_X, Staub, Gesamt-C und O₂,
Berichts-Nr.: EuL/21257161/A

Tabelle Anhang: Auswertung der Staubemissionsmessungen

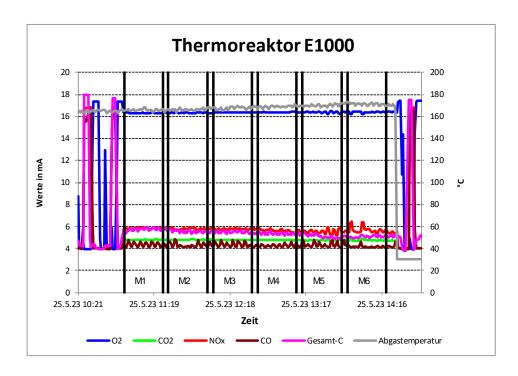
Firma		Ardagh					
Anlage		AD Anlage E20	00				
Messstelle		Kamin					
Messtag		24.05.2023	24.05.2023	24.05.2023	24.05.2023	24.05.2023	24.05.2023
Messung	Nr.	1	2	3	4	5	6
Volumenstrom-Messung	Nr.	1	1	1	1	1	1
Lastzustand		Volllast	Volllast	Volllast	Volllast	Volllast	Volllast
Messbeginn	Uhr	11:30	12:05	12:40	13:15	13:50	14:25
Messende	Uhr	12:00	12:35	13:10	13:45	14:20	14:55
HAUPTVOLUMENSTROM						•	l.
Temperatur (im Mittel)	°C	29	29	29	29	29	29
desgleichen absolut	K	302	302	302	302	302	302
Barometerstand	hPa	1015	1015	1015	1015	1015	1015
statische Druckdifferenz	hPa	0	0	0	0	0	0
absoluter Druck im Kanal	hPa	1015	1015	1015	1015	1015	1015
Sauerstoffkonzentration	Vol%	20,9	20,9	20,9	20,9	20,9	20,9
Kohlendioxidkonzentration	Vol%	0,0	0,0	0,0	0,0	0,0	0,0
Feuchte (n,f)	m ³ /m ³	0,010	0,010	0,010	0,010	0,010	0,010
Wassergehalt bez. auf trockenes Abgas	g/m³	8,0	8,0	8,0	8,0	8,0	8,0
Dichte (n,f)	kg/m³	1,288	1,288	1,288	1,288	1,288	1,288
Dichte (t,p,f)	kg/m³	1,166	1,166	1,166	1,166	1,166	1,166
Mittlerer Wurzelwert d. dyn. Drucks	√Pa	6,2	6,2	6,2	6,2	6,2	6,2
Mittlere Gasgeschwindigkeit	m/s	8,1	8,1	8,1	8,1	8,1	8,1
Kanalquerschnitt	m²	2,54	2,54	2,54	2,54	2,54	2,54
Hauptvolumenstrom (t,p,f)	m³/s	20,6	20,6	20,6	20,6	20,6	20,6
desgleichen stündlich (t,p,f)	m³/h	74.100	74.100	74.100	74.100	74.100	74.100
bz. auf Normzustand fe.(n,f)	m³/h	67.000	67.000	67.000	67.000	67.000	67.000
bz. auf Normzustand tr.(n,tr)	m³/h	66.300	66.300	66.300	66.300	66.300	66.300
ABGESAUGTES TEILGASVOLUMEN							
Dauer der Absaugung	h:min	00:30	00:30	00:30	00:30	00:30	00:30
Temperatur an der Gasuhr	°C	26,5	28,5	30	31,5	32	31,5
statischer Druck an der Gasuhr	hPa	0	0	0	0	0	0
Sondendurchmesser	mm	10	10	10	10	10	10
Teilgasvolumen (t,p,tr)	m³	1,162	1,174	1,16	1,183	1,172	1,162
Korrekturfaktor der Gasuhr		0,987	0,987	0,987	0,987	0,987	0,987
bz. auf Normzustand tr.(n,tr)	m³	1,047	1,051	1,034	1,049	1,037	1,030
Isokinetisches Verhältnis	%	102	103	101	102	101	101
MASSENKONZENTRATION- UND STROM							
Staubmasse, Filter	mg	< 0,3	< 0,3	< 0,3	< 0,3	< 0,3	< 0,3
Staubmasse vor Filter	mg	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05	< 0,05
Staubmasse, gesamt	mg	< 0,3	< 0,3	< 0,3	< 0,3	< 0,3	< 0,3
Gesamtleerprobe, Feldblindwert	mg	< 0,35	< 0,35	< 0,35	< 0,35	< 0,35	< 0,35
bezogen auf das Teilgasvolumen (Norm, tr)	mg/m³	< 0,33	< 0,33	< 0,34	< 0,33	< 0,34	< 0,34
Blindwert in Relation zum Grenzwert	%	< 11,1	< 11,1	< 11,3	< 11,1	< 11,2	< 11,3
Blindwert in Relation zum Messwert	%	< 101	< 101	< 99	< 101	< 99	< 100
Sauerstoffgehalt im Abgas	Vol%	20,94	20,94	20,94	20,94	20,94	20,94
Massenstrom	kg/h	< 0,022	< 0,022	< 0,022	< 0,022	< 0,022	< 0,022
Staubkonzentration (n,f)	mg/m³	< 0,33	< 0,33	< 0,34	< 0,33	< 0,34	< 0,34
Staubkonzentration (n,tr)	mg/m³	< 0,33	< 0,33	< 0,34	< 0,33	< 0,34	< 0,34

h der Tabelle sind gerundete Rechenwerte angegeben, so dass sich Abweichungen zur Darstellung in Kapitel 6 ergeben können.

t,p,f = Betriebszustand

n,f = bezogen auf Normzustand (273 K, 1013 hPa) feuchtes Abgas

n,tr = bezogen auf Normzustand (273 K, 1013 hPa) trockenes Abgas

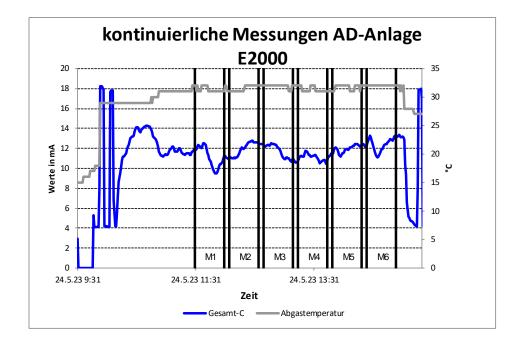

t,p,tr = Gasuhrzustand nach Abgastrocknung

TÜVRheinland®
Genau. Richtig.

Bericht über die Durchführung von Emissionsmessungen an der Anlage zum Lackieren von Getränkedosen bei der Ardagh Metal Beverage Germany GmbH in Weißenthurm für die Messobjekte CO, NO_X , Staub, Gesamt-C und O_2 , Berichts-Nr. EuL/21257161/A

Seite 33 von 35

Anhang A3: Grafische Darstellung des zeitlichen Verlaufs kontinuierlich gemessener Komponenten



Nr.	Messung	von	bis	Betrieb
1	M1	10:57	11:27	Volllast
2	M2	11:31	12:01	Volllast
3	М3	12:06	12:36	Volllast
4	M4	12:40	13:10	Volllast
5	M5	13:15	13:45	Volllast
6	М6	13:50	14:20	Volllast

Seite 34 von 35

Bericht über die Durchführung von Emissionsmessungen an der Anlage zum Lackieren von Getränkedosen bei der Ardagh Metal Beverage Germany GmbH in Weißenthurm für die Messobjekte CO, NO_X, Staub, Gesamt-C und O₂, Berichts-Nr.: EuL/21257161/A

Nr.	Messung	von	bis	Betrieb
1	M1	11:30	12:00	maximale Linienauslastung
2	M2	12:05	12:35	maximale Linienauslastung
3	М3	12:40	13:10	maximale Linienauslastung
4	M4	13:15	13:45	maximale Linienauslastung
5	M5	13:50	14:20	maximale Linienauslastung
6	М6	14:25	14:55	maximale Linienauslastung

Erst ab ca. 11:30 wurde eine Adsorptionstemperatur von 185 °C erreicht.

Luftreinhaltung

Bericht über die Durchführung von Emissionsmessungen an der Anlage zum Lackieren von Getränkedosen bei der Ardagh Metal Beverage Germany GmbH in Weißenthurm für die Messobjekte CO, NO_X , Staub, Gesamt-C und O_2 , Berichts-Nr. EuL/21257161/A

Seite 35 von 35

Anhang A4: Abkürzungen

Abkürzungen

СО	Kohlenmonoxid	
NO	Stickstoffmonoxid	
NO ₂	Stickstoffdioxid	
NOx	Stickstoffmonoxid und -dioxid, angegeben als Stickstoffdioxid	
O ₂	Sauerstoff	
CO ₂	Kohlendioxid	
Gesamt-C	Gesamtkohlenstoff	
Staub	Gesamtstaub	
Org. Stoffe	Organische Stoffe als Gesamtkohlenstoff	