

Die Messstelle der HVG ist von der DAkkS nach DIN EN ISO/IEC 17025:2018 akkreditiert

Bericht Nr. 3076 der HVG

über

Emissionsmessungen an Anlagen zur Herstellung keramischer Erzeugnisse

Name des akkreditierten Prüflabors: Hüttentechnische Vereinigung

der Deutschen Glasindustrie e. V.

Befristung der Bekanntgabe nach

§29b BlmSchG: 27. Juni 2026

Betreiber: Westerwälder Blumentopf-Fabrik Spang GmbH & Co. KG

Standort: Rheinstraße 113-120

56235 Ransbach-Baumbach

Anlage: Anlage zur Herstellung keramischer Erzeugnisse

(Blumentöpfe)

Auftragsnummer: Auftrag per E-Mail

Auftragsdatum: 15.10.24

Art der Messung: Emissionsmessungen nach §28 BlmSchG

Zeitraum der Messungen: 08.05.2025

Berichtsumfang: 25 Seiten

Anlagen (7 Seiten)

Berichtsdatum: 10. Juli 2025

Aufgabenstellung: Im Auftrag der Firma Westerwälder Blumentopf-Fabrik

Spang GmbH & Co. KG waren im Reingas der Filteranlage des Herdwagenofens Emissionsmessungen nach

§28 BlmSchG durchzuführen.

Zusammenfassung

Anlage	Anlagen zum Brennen keramischer Erzeugnisse (einschließlich Anlagen zum Blähen von Ton) mit einer Produktionskapazität von 75 Tonnen oder mehr je Tag gemäß Ziffer 2.10.1 der 4. BImSchV.			
Betriebszeiten	Maximal 12 Stunden / Tag an 21 Tagen im Monat			
Emissionsquelle(n)	Kamin des Herdwagenofens			
Quellennummer	Nicht bekannt			
Messkomponenten	Gesamtstaub, NO _x , SO ₂ , HF			
Betriebszustand	Der Herdwagenofen wurde im Normalzustand betrieben. Die Brennleistung betrug 94 % der maximal möglichen Brennleistung.			

Westerwälder Blumentopf-Fabrik Spang GmbH & Co. KG

Herdwagenofen

Komponente	Einheit	Maximaler	Grenzwert	
		Abzgl. erw. Zzgl. erw.		
		doppelter Messunsicherheit *)		
Gesamtstaub	[mg/m ³]	7	9	40
NO _x	[mg/m ³]	29	49	350
SO ₂	[mg/m ³]	0	42	500
HF	[mg/m ³]	0	2	5

(Volumenstromangaben sind bezogen auf trockenes Abgas im Normzustand und 17% Bezugssauerstoff)

 $^{^{\}star}) \ Der \ Wert \ für \ die \ Messsunsicherheit \ wurde \ jeweils \ verdoppelt, \ um \ der \ nicht idealen \ Messstelle \ Rechnung \ zu \ tragen.$

Bericht Nr. 3076, Seite 3 von 25

HÜTTENTECHNISCHE VEREINIGUNG DER DEUTSCHEN GLASINDUSTRIE

ln	ha	Its	ve	rz	ei	Cl	าท	is

Zusamı	menfassung	2
Inhalts	verzeichnis	3
1	Messaufgabe	4
2	Beschreibung der Anlage und der gehandhabten Stoffe	6
2.1	Bezeichnung der Anlage	6
3	Beschreibung der Probenahmestellen	8
4	Messverfahren für die Vergleichsmessungen	10
4.1	Abgasrandbedingungen	10
4.2	Automatische Messverfahren	12
4.3	Manuelle Messverfahren für gas- und dampfförmige Emissionen	13
4.4	Messverfahren für partikelförmige Emissionen	15
4.5	Besondere hochtoxische Abgasinhaltsstoffe (PCDD/PCDF u.Ä.)	16
4.6	Geruchsemissionen	16
5	Betriebszustand der Anlagen während der Messungen	17
5.1	Produktionsanlagen	17
5.2	Abgasreinigungsanlagen	17
6	Zusammenstellung der Messergebnisse und Diskussion	18
6.1	Bewertung der Betriebsbedingungen während der Messungen	18
6.2	Messergebnisse	18
6.2.1	Abgasdaten	18
6.2.2	Partikelförmige Emissionen	19
6.2.3	NO _X -Emissionen	20
6.2.4	SO ₂ -Emissionen	21
6.2.5	HF-Emissionen	22
6.2.6	Zusammenstellung der Messergebnisse	23
6.3	Messunsicherheiten	24
6.4	Diskussion der Ergebnisse	25
7	Anlagenübersicht	A1-A6

1 Messaufgabe

1.1 Auftraggeber

Name: Westerwälder Blumentopf-Fabrik Spang GmbH & Co. KG

Anschrift: Rheinstraße 113 – 120

56235 Ransbach-Baumbach

1.2 Betreiber

Name: Westerwälder Blumentopf-Fabrik Spang GmbH & Co. KG

Anschrift: Rheinstraße 113 – 120

Ansprechpartner / Telefon:

1.3 Standort

Anschrift: Rheinstraße 113 – 120

56235 Ransbach-Baumbach

1.4 Anlage

Anlagen zum Brennen keramischer Erzeugnisse (einschließlich Anlagen zum Blähen von Ton) mit einer Produktionskapazität von 75 Tonnen oder mehr je Tag, gemäß Ziffer 2.10.1 der 4. BImSchV.

Betriebsstätten- oder Arbeitsstätten-Nr.: Nicht bekannt

Anlagennummer gemäß Genehmigung: 266719 Anlagennummer gemäß 4. BlmSchV: 2.10.1

1.5 Datum der Messung

Datum der Messung: 08.05.2025
Datum der letzten Messung: 16.08.2022
Datum der nächsten Messung: Mai 2028

1.6 Anlass der Ermittlungen

Wiederkehrende Emissionsmessung nach §28 BlmSchG.

1.7 Aufgabenstellung

Im Auftrag der Firma Westerwälder Blumentopf-Fabrik Spang GmbH & Co. KG waren im Reingas der Filteranlage des Herdwagenofen Emissionsmessungen nach §28 BlmSchG durchzuführen.

Genehmigungsbehörde: Struktur- und Genehmigungsdirektion Nord RLP **Bescheid** Az.: 23/01/5.1/2016/0142 BI/DI vom 07.09.2016

Relevante Emissionsgrenzwerte gemäß Bescheid (Auszüge)

Gesamtstaub: 40 mg/m³
 NO_x: 350 mg/m³
 SO₂: 500 mg/m³
 HF: 5 mg/m³

Die Messwerte sind auf Abgas mit 273 K und 101,3 kPa mit einem Volumengehalt an Sauerstoff von 17% zu beziehen.

Für die Zeiten, in denen der Sauerstoffgehalt unter dem Bezugswert liegt, ist für HF keine Umrechnung auf den Bezugssauerstoffgehalt durchzuführen

1.8 Messkomponenten

Abgasrandbedingungen

O₂, Temperatur, Druck, Geschwindigkeit, Feuchte

Emissionskomponenten

1. Gesamtstaub

2. Stickstoffoxide (NO_x, angegeben als NO₂)

3. Schwefeldioxid (SO₂)4. gasförmige Fluor-Verbindungen (HF)

1.9 Ortsbesichtigung vor Messdurchführung

☐ nicht durchgeführt

1.10 Messplanabstimmung

Der Messplan wurde mit der Betriebsleitung der Fa. Westerwälder Blumentopf-Fabrik Spang GmbH & Co. KG abgestimmt. Die Durchführung der Probenahme erfolgte nach der von der HVG bei vergleichbaren Anlagen erprobten Vorgehensweise.

Der Messtermin wurde dem Landesamt für Umwelt Rheinland-Pfalz (LFU) fristgerecht mitgeteilt.

1.11 An der Messung beteiligte Personen

Name	Funktion
	Projektleiter
	Projektingenieur

1.12 Beteiligung weiterer Institute

Keine.

1.13 Fachlich verantwortlich

2 Beschreibung der Anlage und der gehandhabten Stoffe

2.1 Bezeichnung der Anlage

Anlage zum Brennen keramischer Erzeugnisse (einschließlich Anlagen zum Blähen von Ton)

2.2 Beschreibung der Anlagen

Die Firma Spang GmbH & Co. KG betreibt auf ihrem Betriebsgelände einen gasbefeuerten Herdwagenofen zum Glasurbrand von bereits in den anderen Brennanlagen vorgebrannten Blumentöpfen und Schalen. Das zu brennende Gut wird in den Ofen gefahren und anschließend bis zur Haltetemperatur von 1050°C über mehrere Stunden aufgeheizt. Das Brenngut verbleibt für einige Stunden bei dieser Temperatur und wird anschließend zur Entnahme wieder abgekühlt. Die Abgase des Herdwagenofens werden vereinigt und mittels eines Saugzugventilators einem Schüttgutfilter zur Abscheidung saurer Bestandteile, insbesondere von Fluorverbindungen, zugeführt. Nach dem Passieren dieser Filteranlage gelangen die Abgase über einem Abgaskanal zu einem Stahlkamin ins Freie.

Der Schüttgutfilter ist mit Kreide des Typs Reasorb TAV 3-7 mm der Firma Vereinigte Kalkwerke Dammann gefüllt. Die Dosierung des Sorptionsmittels wird über den Durchsatz an Brenngut geregelt. Das reagierte Korn dieser Kreide wird nach Verlassen der Reaktionsstrecke ausgeschleust und deponiert.

Die Anlage wird diskontinuierlich betrieben.

Westerwälder Blumentopf-Fabrik Spang GmbH & Co. KG / Ransbach-Baumbach

		Herdwagenofen
Hersteller		Forni Ficola, Italien
Baujahr		1991
Abmessungen des		
Ofenkanals (L x B x H)	[m]	9,00 x 3,00 x 1,50
Nutzbarer Rauminhalt	[m ³]	28
Gesamter Rauminhalt	[m ³]	40,5
Wagen im Ofen	[Stk]	8
Brenngut		Schalen glasiert
Spezifisches Besatzgewicht	[kg/m ³]	380
Totales Besatzgewicht	[t]	10,60
Temperatur Brennzone	[°C]	1100
Feuerungswärmeleistung	[GJ/h]	5,5
Spezifischer Wärmebedarf	[kJ/kg]	2100

2.3 Beschreibung der Emissionsquelle(n) nach Betreiberangaben

Bezeichnung der Emissionsquelle: Abgaskamin

Höhe über Grund: 18 m

Austrittsfläche: Nicht bekannt

UTM-Koordinaten: 32U 409601 5590435

Bauausführung: Stahlkamin, rund, offene Abströmung

2.4 Angabe der laut Genehmigungsbescheid möglichen Einsatzstoffe

Glasurware, Erdgas

2.5 Betriebszeiten nach Betreiberangaben

maximal 12 Stunden / Tag an 21 Tagen im Monat / 2700 h/a

2.6 Einrichtung zur Erfassung und Minderung der Emissionen

2.6.1 Einrichtung zur Erfassung der Emissionen

2.6.1.1 Art der Emissionserfassung

Eine besondere Anlage zur Erfassung der Emissionen existiert nicht. Es handelt sich um ein geschlossenes Abgassystem.

2.6.1.2 Ventilatorkenndaten

Piller, Osterode			
Тур	7347 RK 40630		
Baujahr	1984		
Leistung	18,5 kW		
Volumenstrom	25920 [m ³ /h]		

2.6.2 Einrichtung zur Verminderung der Emissionen

Fluoradsorber			
Hersteller	Heitling, Meile		
Bauart	Schüttschichtfilter, rund		
Тур	2-40-8		
Baujahr	1984		
Absorbermaterial	Kreide, Typ Reasorb TAV 3-7 mm		
Wartung	wartungsfrei		

2.6.3 Einrichtung zur Verdünnung des Abgases

Eine gezielte Verdünnung findet nicht statt.

3 Beschreibung der Probenahmestellen

3.1 Messstrecke und Messquerschnitt

3.1.1 Lage und Abmessungen

Die Messstelle befindet sich im Reingas in ca. 2 m Höhe, etwa 2 m nach Austritt aus der Filteranlage und direkt an der Hallenwand von Werk 2 in einem horizontal verlaufenden Teilstück des Abgaskanals.

Empfehlung $\geq 5 \cdot D_h$ Einlauf und $2 \cdot D_h$ Auslauf ($5 \cdot D_h$ vor Mündung):

⊠erfüllt □nicht erfüllt

Die Einlaufstrecke ist kleiner als der fünffache hydraulische Durchmesser.

Die Auslaufstrecke ist größer als der zweifache hydraulische Durchmesser.

Abmessungen:

Innendurchmesser: 0,63 m Querschnittsfläche: 0,312 m²

3.1.2 Arbeitsfläche und Messbühne

Die Messstelle befindet sich in etwa 3 m über dem Hallenboden und ist über ein kleines Podest zu erreichen. Der Traversierraum ist ausreichend bemessen.

3.1.3 Messöffnungen

An der Reingasmessstelle stehen zwei um 90° versetzt angeordnete 1"-Stutzen sowie ein 4"-Stutzen zur Verfügung. Nur der 4"-Stutzen steht für eine Staubmessung zur Verfügung.

3.1.4 Strömungsbedingungen im Messquerschnitt

Winkel des	Cacetrome	Zur Mitta	alachea c	dee Ahaaa	ekanale <	150.
AAIIIVEI GES	CICCODI	/ LJI IVIII I (510UISC U	169 MUUU3	onaliaio >	

⊠erfüllt □nicht erfüllt

Keine lokale negative Strömung:

⊠erfüllt □nicht erfüllt

Höchste / niedrigste örtliche Geschwindigkeit im Messquerschnitt < 3:1:

⊠erfüllt □nicht erfüllt

Mindestgeschwindigkeit (in Abhängigkeit vom verwendeten Messverfahren):

⊠erfüllt □nicht erfüllt

3.1.5 Zusammenfassende Beurteilung der Messbedingungen

Messbedingungen nach DIN EN 15259:2008:

Ergriffene Maßnahmen:

Verdoppelung der erw. Messunsicherheit.

Zu erwartende Auswirkungen auf das Ergebnis:

Keine.

Empfehlungen und Hinweise zur Verbesserung der Messbedingungen:

Anbringen von zwei 3" Messstutzen, um 90° versetzt.

3.2 Lage der Messpunkte im Messquerschnitt

3.2.1 Darstellung der Messpunkte im Messquerschnitt

	Position der Messpunkte [cm]				
Punkt	Achse 1	Achse 2 / 90 °versetzt			
1	9,2	9,2			
2	53,8	53,8			

3.2.2 Homogenitätsprüfung

□durchgeführt
⊠nicht durchgeführt
□Fläche Messquerschnitt < 0,1 m²
⊠Netzmessung
□liegt vor
Datum der Homogenitätsprüfung:
Bericht-Nr. / Prüfinstitut:
Ergebnis der Homogenitätsprüfung:
\square Messung an einem beliebigen Punkt
\square Messung an einem repräsentativen Punkt
Beschreibung der Lage des repräsentativen Punkts:
Entfällt.

3.2.3 Komponentenspezifische Darstellung

Komponente	Anzahl der Messachsen	Anzahl Messpunkte je Messebene	Homogenitätsprüfung durchgeführt	Beliebiger Messpunkt	Repräsentativer Messpunkt
Staub, SO ₂ , HF	1	2			
CO, NO _X , O ₂ , CO ₂ ,	1	2			
Abgastemperatur	1	1			\boxtimes
Abgasvolumenstrom	2	2			

An der Messstelle steht nur ein 4"-Stutzen für Staubmessungen zur Verfügung. Entsprechend konnte kein Achswechsel durchgeführt werden.

Bei den kontinuierlich erfassten Komponenten wurde ebenfalls auf einen Achswechsel verzichtet, um ein ungestörtes Emissionsbild zu erhalten.

Um diesen Nachteilen Rechnung zu tragen, wurde die erweiterte Messunsicherheit der entsprechenden Komponenten vordoppelt.

4 Messverfahren für die Vergleichsmessungen

4.1 Abgasrandbedingungen

Die eingesetzten Messgeräte unterliegen der turnusmäßigen Prüfmittelüberwachung.

4.1.1 Strömungsgeschwindigkeit

Ermittlungsmethode: DIN EN ISO 16911-1:2013: "Manuelle und auto-

matische Bestimmung der Geschwindigkeit und des Volumenstroms in Abgaskanälen - Teil 1: Manuelles

Referenzverfahren."

Messeinrichtung: Prandtl'sches Staurohr in Verbindung mit einem

elektronischen Mikromanometer vom Typ PVM620

der Firma Airflow Lufttechnik GmbH.

Berechnungsverfahren: Entsprechend oben genannter Richtlinie

Kontinuierliche Ermittlung: □ja ⊠nein Messbereich: 0 bis 78,8 m/s

4.1.2 Statischer Druck im Abgaskamin

Messeinrichtung: Elektronisches Mikromanometer nach 4.1.1

Messbereich: ± 3735 Pa

4.1.3 Luftdruck in Höhe der Probenahmestelle

Messeinrichtung: Aneroid-Barometer

4.1.4 Abgastemperatur

Messeinrichtung: Ni-CrNi-Thermoelement (Typ K)

Kontinuierliche Ermittlung: ⊠ja □nein Messbereich: 0 bis 600 °C

4.1.5 Wasserdampfanteil im Abgas (Abgasfeuchte)

Messung des Wasserdampfanteils

Messverfahren: DIN EN 14790:2017: "Bestimmung von Wasser-

dampf in Leitungen."

Messeinrichtung: Gravimetrische Bestimmung nach Absaugen eines

Teilstroms und Absorption an H₂O-Molekularsieb

0,3 Å.

Messbereich: 0 bis 100 Gew.-%

Wägung

Klimatisierter Wägeraum: Ja

Waage:

Hersteller / Typ: Shimadzu Typ AP225WD

Ablesbarkeit: 0,01 mg

Berechnung

Entfällt

4.1.6 Abgasdichte

Ermittlungsmethode: Berechnet unter Berücksichtigung der Abgasbestandteile an Sauerstoff, Kohlendioxid, Luftstickstoff und Abgasfeuchte sowie von Abgastemperatur und Druckverhältnissen.

4.1.7 Abgasverdünnung

Ermittlungsmethode: Entfällt

4.1.8 Volumenstrom

Ermittlungsmethode: Siehe 4.1.1

Querschnittsfläche:

Ermittlungsverfahren: Direkte Bestimmung.

Messeinrichtung: Verwendung einer Metallstange / Markierung

des Durchmessers / Feststellen des Durch-

messers mittels Zollstocks.

Fläche der Volumenstrom-

messeinrichtung zur Querschnittsfläche: 2,585 %

4.2	Automatische Messver	fahren				
4.2.1	Messkomponenten	O ₂	CO ₂	NO _x	CO	SO ₂
4.2.1.1	Messverfahren	Paramagnet. DIN EN 14789:2017	IR ISO 12039:2019	CLD DIN EN 14792:2017	IR DIN EN 15058:2017	IR ISO 7935:1992
4.2.1.2	Analysator		НС	RIBA PG 350 P	•	
4.2.1.3	Eing. Messbereiche	0 - 25 %	0 - 20 %	0 - 1000 ppm	0 - 1000 ppm	0 - 1000 ppm
4.2.1.4	Gerätetyp eignungsgep	orüft				
	HORIBA PG 350 P					
	□Zertifizierung nac □Einsatzfähigke □Eignungsprüfung □Einsatzfähigke Die Verfahrenskenngröß jeweiligen Regelwerke.	it des Geräts auf Basis de it des Geräts	s für den mobile r BEP ohne Ze s für den mobile	rtifizierung en Einsatz wi	urde verifiziel	rt
4.2.1.5	Probenahme und Probe	enaufbereitu	ıng			
	Entnahmesonde: Beheizt: Maximale Eintaucht Staubfilter:		Auf Abgaste 0,12 m	emperatur		
	Beheizt:		Auf Abgaste	emperatur		
	Probegasleitung vor Gas	aufbereitung				
	Beheizt: Länge:		160 °C ∼ 5 m			
	Probegasleitung nach G	asaufbereitur				
	Länge:		~ 27 m			
	Messgasaufbereitung:					
	Messgaskühler:			cts GmbH, R	atingen	
	Typ:	una out	PSS 5 3 °C			
	Temperaturregel	ung aur:	3 C			

4.2.1.6 Überprüfung von Null- und Referenzpunkt mit Prüfgasen

	Komponente	Konzentration	Rel. Unsicherheit	Einheit	Hersteller	Gültig bis
	NO	800,9	± 2%	ppm		10.10.2027
"	O ₂	15,05	± 2%	Vol-%	Basi Schöberl	
Mischgas	CO ₂	14,93	± 2%	Vol-%	GmbH & Co.	
Scl	СО	758,7	± 2%	ppm	KG	10.10.2027
≥	SO ₂	748,4	± 2%	ppm		

Prüfgase für Emissionskomponenten werden vor der Freigabe zum Messeinsatz mit DKD-Prüfgasen kontrolliert. Der Sauerstoffgehalt des O₂-Prüfgases wird nach der Justierung mit Umgebungsluft kontrolliert. Arbeitstäglich wird justiert, verifiziert und auf Dichtigkeit geprüft.

Verifizierung

Datum	Komponente	Einheit	Sollwert	Nach Messung	Abweichung [%]*)
	NO		0	0	0
	NO	ppm	801	800	- 0,12
			0,00	0,04	0,13
08.05.2025	O ₂	Vol%	15,05	15,03	- 0,13
	СО	CO ppm	0	0	0,00
			759	756	- 0,40

^{*)} Bezogen auf die Prüfgaskonzentration

4.2.1.7 Einstellzeit des gesamten Messaufbaus

Die Null- und Prüfgase werden den Messgeräten jeweils über die Messgasaufbereitung zugeführt. Die Dichtheit des Systems wird überprüft, indem Stickstoff am Eingang des Sondenkopfes aufgegeben wird. Die Totzeit des Probengases beträgt bei den Analysatoren maximal 30 s, die 90 %-Einstellzeit beträgt maximal 115 s.

4.2.1.8 Messwerterfassungssystem

Kontinuierlich mit digitaler Messdatenerfassungsanlage

Hersteller / Typ: iba AG / ibaW-750 Erfassungsprogramm: ibaPDA v8.4.3

Auswerteprogramm: ibaAnalyzer Software v8.1.1

Ausgabe der Momentan- und Mittelwerte frei wählbar.

4.3 Manuelle Messverfahren für gas- und dampfförmige Emissionen

4.3.1 Messkomponenten

SO₂, HF

4.3.1.1 Messverfahren

SO₂: DIN EN 14791:2017: "Bestimmung der Massenkonzentration von Schwefel-

dioxid, Referenzverfahren"

HF: VDI Richtlinie 2470, Blatt 1:1975: "Messen gasförmiger Fluorverbindungen,

Absorptionsverfahren"

4.3.1.2 Probenahme und Probenaufbereitung

Rückhaltesystem für partikelförmige Stoffe

Filtergerät: Planfilterkopfgerät

Anordnung:

⊠ innenliegend im Kanal

□außenliegend im Kanal

Filtrationstemperatur: Abgastemperatur

Entnahmesonde und Absaugeinrichtung

Material Außenwerkstoff: Titan
Material gasführende Teile: Titan

Sondentemperatur: 20 °C über Abgastemperatur

Absorptionseinrichtungen: 2 Fritten-Waschflaschen (Fritte D2) Sorptionsmittel: 2 * 100 ml 1 %-ige H₂O₂-Lösung *)

Abstand Sondenspitze und

Sorptionsmittel: ~ 1,0 m

Absaugeinrichtung: Gasprobenahmekoffer

Zeitraum zwischen Probenahme

und Analyse: ~1 Wochen

*) Die Probenahme und Analyse von HCl und HF in H₂O₂-Lösung wurde im Rahmen der Reakkreditierung der HVG im Jahr 2016 verifiziert. Die Messergebnisse sind in die Bestimmung der Messunsicherheiten eingeflossen.

4.3.1.3 Analytische Bestimmung

Analyseverfahren

SO₂: Titration mit 0,005 molarer Ba(ClO₄)₂-Lösung mit Thorin als Indikator

HF: Analyse mit ionenselektiver Elektrode

Aufbereitung des Probenmaterials

Gemäß entsprechenden Richtlinien.

Analysengeräte

SO₂: Dosimat 655 der Firma Metrohm

HF: pH/ISE-Messgerät, Typ: InoLab pH/ION 7320 der Firma WTW / Xylem Analytics

Germany Sales GmbH & Co. KG, Weilheim

Fertig-Standardlösungen

Z.B. Fa Merck, Darmstadt / AnalytiChem GmbH, Oberhausen.

Beteilung eines Fremdlabors

Nein.

4.4 Messverfahren für partikelförmige Emissionen

4.4.1 Messkomponenten

Gesamtstaub

4.4.1.1 Messverfahren

Gravimetrische Ermittlung der Staubbeladung in strömenden Gasen gemäß DIN EN 13284-1:2018 bzw. nach VDI-Richtlinie 2066, Blatt 1:2021.

Grundlage des Verfahrens

Unter isokinetischen Bedingungen wird ein Teilgasvolumen aus dem Hauptvolumenstrom entnommen. Der im Teilgasvolumen enthaltene Staub wird durch ein Rückhaltesystem abgeschieden. Die Staubkonzentration wird zeit- und volumenbezogen gravimetrisch bestimmt.

4.4.1.2 Probenahme und Probenaufbereitung

Rückhaltesystem für partikelförmige Stoffe

Filtergerät:	Titan-Planfilterkopf
Anordnung:	⊠innenliegend im Kanal
	□außenliegend im Kanal
Filtrationstemperatur:	Abgastemperatur
Krümmer zw. Entnahmesonde	
und Filtergehäuse:	⊠Ja □Nein
Entnahmesonde / Absaugrohr:	
Wirkdurchmesser:	8 mm
Material:	Titan
Filter:	
Durchmesser:	50 mm
Material:	Quarzfaser

Absaugeinrichtung

Hersteller: Firma Bronkhorst HighTech B. V.

Typ: MASS-STREAM D-6361/002BI MFC

Fühler/Regler: Thermischer Direktstrom-Massendurchflussregler

Pumpe: Drehzahlgeregelte Drehschieberpumpe

Volumenstromkontrolle: Messblende in Verbindung mit Schrägrohrmano-

meter / Gasmengenzähler (trockene Gasuhr) / Manometer für Absolutdruck / Temperaturmess-

gerät

Absorptionssystem für filtergängige Stoffe

Entfällt.

4.4.1.3 Behandlung der Filter und der Ablagerungen

Trocknungstemperatur und Trocknungszeit der Filter:

Vor Beaufschlagung: 180 °C, 1 Stunde Nach Beaufschlagung: 160 °C, 1 Stunde

Rückgewinnung von Ablagerung vor dem Filter:

□Ja

⊠Nein, weil: Es waren keine Ablagerungen erkennbar

Wägung: Im Labor (klimatisierter Wägeraum)

Waage: Shimadzu Typ AP225WD

Ablesbarkeit: 0,01 mg

4.4.1.4 Aufbereitung und Analyse der Filter und der Absorptionslösungen

Entfällt.

4.5 Besondere hochtoxische Abgasinhaltsstoffe (PCDD/PCDF u.Ä.)

Entfällt.

4.6 Geruchsemissionen

Entfällt.

5 Betriebszustand der Anlagen während der Messungen

Nach Angaben der Betriebsleitung der Firma Westerwälder Blumentopf-Fabrik Spang GmbH & Co. KG lagen die folgenden Betriebsdaten vor:

5.1 Produktionsanlagen

Westerwälder Blumentopf-Fabrik Spang GmbH & Co. KG

Datum: 08.05.2025

	Herdwagenofen
Betriebsweise	Normalbetrieb (Programm "Schnell")
	Aufheizgase: 9 Std
Besatzgewicht	Gesamtgewicht 8,742 t; (Herdwagen
	gefüllt)
Einsatzstoffe	Glasurware
Brennstoff	Erdgas H
Max. Ofentemperatur	1024 °C
Produkte	Glasurware
Gasverbrauch von 04.00-14.30	701,8 m ³

Abweichungen von genehmigter bzw. bestimmungsgemäßer Betriebsweise: keine Besondere Vorkommnisse: keine

5.2 Abgasreinigungsanlagen

Adsorbens:	Kreide, Typ Reasorb 3-7 mm
Unterdruck:	k. A.
Betrieb:	Normal einschl. diskontinuierliche Umwälzung des Sorptionsmittels
Kreidedurchsatz RR:	10 - 15 kg/h (abhängig von der Schubleistung)
letzte Wartung:	Entfällt, da wartungsfrei

6 Zusammenstellung der Messergebnisse und Diskussion

6.1 Bewertung der Betriebsbedingungen während der Messungen

Während der Messung wurde der Herdwagenofen nach Betreiberangaben unter Normalbedingungen und unter betriebsüblicher Volllast bei einer maximalen Brenntemperatur von 1024°C betrieben. Die Brennleistung betrug für den Herdwagenofen 94% der maximale möglichen Brennleistung (bezogen auf den Besatz).

Die Forderung der Ziffer 5.3.2.2 der TA-Luft, wonach die Messdurchführung zum Zeitpunkt der höchsten Emission erfolgen soll, war somit erfüllt.

6.2 Messergebnisse

6.2.1 Abgasdaten

Westerwälder Blumentopf-Fabrik Spang GmbH & Co. KG

Datum: 08.05.2025

Herdwagenofen					
Mittlerer O ₂ -Gehalt	[Vol%]	18,3			
Mittlerer CO ₂ -Gehalt	[Vol%]	1,5			
Mittlere Abgasfeuchte, bez. auf trockenes Abgas	[kg/m³]	0,0258			
Mittlere Dichte der feuchten Abgase	[kg/m³]	1,284			
Mittlere Abgastemperatur	[°C]	140			
Mittlere Abgasgeschwindigkeit	[m/s]	13,16			
Mittlerer Abgasvolumenstrom					
- trocken, gemessen	[m ³ /h]	9152			
- feucht, gemessen	[m ³ /h]	9446			
Überdruck im Abgaskanal	[mbar]	2,1			
Barometerstand	[mbar]	978			

(Volumenstromangaben sind bezogen auf Normzustand)

6.2.2 Partikelförmige Emissionen

Westerwälder Blumentopf-Fabrik Spang GmbH & Co. KG Reingas Herdwagenofen

Datum: 08.05.2025

Uhrzeit	O ₂ -Gehalt	Gesamtstaub			
		Gemessen	normiert	Emissionen	
	[Vol%]	[mg/m³]	[mg/m ³]	[kg/h]	
12.00-12.30	18,3	5,5	8,1	0,0503	
12.40-13.10	18,3	0,1	0,1	0,0008	
13.30-14.00	18,6	4,2	7,0	0,0386	
Mittelwert	18,4	3,4	5,1	0,0299	
Maximalwert	18,6	5,5	8,1	0,0503	

Mittlerer Abgasvolumenstrom: 9152 m³/h

(Volumenangaben sind bezogen auf trockenes Abgas im Normzustand)

Anmerkung: Die Anlage wurde um 14.30 Uhr heruntergefahren. Entsprechend konnten die geplanten 6 diskontinuierlichen Messungen nicht durchgeführt werden. Eine gestartete 4. Messung musste entsprechend abgebrochen werden.

6.2.3 NO_x-Emissionen

Westerwälder Blumentopf-Fabrik Spang GmbH & Co. KG Reingas Herdwagenofen

Datum: 08.05.2025

Uhrzeit	O ₂ -	NO _x				
	Gehalt	Gemessen	normiert	Emission		
	[Vol%]	[mg/m³]	[mg/m³]	[kg/h]		
10.30-11.00	18,7	22	38	0,20		
11.00-11.30	18,5	24	38	0,22		
11.30-12.00	18,3	26	39	0,24		
12.00-12.30	18,3	26	39	0,24		
12.30-13.00	18,3	26	39	0,24		
13.00-13.30	18,2	26	37	0,24		
13.30-14.00	18,6	22	37	0,20		
Mittelwert	18,5	24	38	0,22		
Maximalwert	19,2	26	39	0,24		

^{*)} Berechnet als NO₂

Mittlerer Abgasvolumenstrom: 9152 m³/h

(Volumenangaben sind bezogen auf trockenes Abgas im Normzustand)

6.2.4 SO₂-Emissionen

Westerwälder Blumentopf-Fabrik Spang GmbH & Co. KG Reingas Herdwagenofen

Datum: 08.05.2025

Uhrzeit	O ₂ -Gehalt	SO ₂			
		Gemessen	normiert	Emissionen	
	[Vol%]	[mg/m³]	[mg/m³]	[kg/h]	
12.00-12.30	18,3	10,7	15,8	0,098	
12.40-13.10	18,3	11,3	16,8	0,104	
13.30-14.00	18,6	11,3	18,9	0,104	
Mittelwert	18,4	11,1	17,1	0,102	
Maximalwert	18,6	11,3	18,9	0,104	

Mittlerer Abgasvolumenstrom: 9152 m³/h

(Volumenangaben sind bezogen auf trockenes Abgas im Normzustand)

Anmerkung: Die Anlage wurde um 14.30 Uhr heruntergefahren. Entsprechend konnten die geplanten 6 diskontinuierlichen Messungen nicht durchgeführt werden. Eine gestartete 4. Messung musste entsprechend abgebrochen werden.

6.2.5 HF-Emissionen

Westerwälder Blumentopf-Fabrik Spang GmbH & Co. KG Reingas Herdwagenofen

Datum: 08.05.2025

Uhrzeit	O ₂ -Gehalt	HF				
		Gemessen	normiert	Emissionen		
	[Vol%]	[mg/m³]	[mg/m³]	[kg/h]		
12.00-12.30	18,3	0,5	0,8	0,005		
12.40-13.10	18,3	0,5	0,8	0,005		
13.30-14.00	18,6	0,5	0,9	0,005		
Mittelwert	18,6	0,5	0,8	0,005		
Maximalwert	18,3	0,5	0,9	0,005		

Mittlerer Abgasvolumenstrom: 9152 m³/h

(Volumenangaben sind bezogen auf trockenes Abgas im Normzustand)

Anmerkung: Die Anlage wurde um 14.30 Uhr heruntergefahren. Entsprechend konnten die geplanten 6 diskontinuierlichen Messungen nicht durchgeführt werden. Eine gestartete 4. Messung musste entsprechend abgebrochen werden.

6.2.6 Zusammenstellung der Messergebnisse

Westerwälder Blumentopf-Fabrik Spang GmbH & Co. KG Reingas Herdwagenofen

Datum: 08.05.2025

	Mittelwerte				
	Gemessen	normiert	Emission		
	[mg/m ³]	[mg/m ³]	[kg/h]		
Staubförmige Emissionen					
Gesamtstaub	3,3	5,1	0,030		
Gasförmige Emissionen	1	ı	ı		
NO _x *)	25	38	0,22		
SO ₂	11	17	0,102		
HF	0,5	0,8	0,005		

^{*)} Berechnet als NO₂

Mittlerer Abgasvolumenstrom: 9152 m³/h

(Volumenangaben sind bezogen auf trockenes Abgas im Normzustand)

6.3 Messunsicherheiten

- 1) Doppelbestimmung / Direkter Ansatz nach den Vorgaben der VDI 4219:2009.
- 2) VDI 4219:2009 / Indirekter Ansatz bei Probenahme, direkter Ansatz bei der Analytik. Beide Teilschritte wurden für das Gesamtverfahren zusammengefügt. Die Berechnung der Messunsicherheiten bei der Probenahme erfolgte unter Berücksichtigung der Varianzermittlung sämtlicher Einflussgrößen.

Komponente	Einheit	Maximaler Messwert Y _{max}	Doppelte erweiterte Messunsicherheit U _p (mit p=0,95) *)	Y _{max} -U _p	Y _{max} +Up	Bestimmungs- methode
Staub	[mg/m ³]	8,1	1,0	7,1	9,1	1)
NO _x	[mg/m ³]	39	10	29	49	1)
SO ₂	[mg/m ³]	19	22	0	41	1)
HF	[mg/m ³]	0,9	0,6	0,3	1,5	1)

^{*)} Der Wert für die Messunsicherheit wurde jeweils verdoppelt, um der nicht idealen Messstelle Rechnung zu tragen.

6.4 Diskussion der Ergebnisse

Im Auftrag der Firma Westerwälder Blumentopf-Fabrik Spang GmbH & Co. KG waren im Reingas der Filteranlage des Herdwagenofens Emissionsmessungen nach §28 BlmSchG durchzuführen.

Während der Messung wurde der Herdwagenofen nach Betreiberangaben unter Normalbedingungen und unter betriebsüblicher Volllast bei einer maximalen Brenntemperatur von 1024°C betrieben. Die Brennleistung betrug für den Herdwagenofen 94% der maximale möglichen Brennleistung (bezogen auf den Besatz).

Die Forderung der Ziffer 5.3.2.2 der TA-Luft, wonach die Messdurchführung zum Zeitpunkt der höchsten Emission erfolgen soll, war somit erfüllt.

Die Ergebnisse sind vergleichbar mit vorherigen Messungen an der gleichen Anlage (vgl. Berichts-Nr. CBO-00923-22-1, Wessling GmbH) und können entsprechend als plausibel bewertet werden.

Die Anlage wurde um 14.30 Uhr heruntergefahren. Entsprechend konnten die geplanten 6 diskontinuierlichen Messungen nicht durchgeführt werden. Eine gestartete 4. Messung musste entsprechend abgebrochen werden.

Weitere besondere Vorkommnisse während der Messungen wurden nicht beobachtet.

Fachlich verantwortlich Der Projektleiter

Offenbach am Main, den 10. Juli 2025

Bericht Nr. 3076, Anhang A1 von A6

HÜTTENTECHNISCHE VEREINIGUNG DER DEUTSCHEN GLASINDUSTRIE

7	Anlagenübersicht	
7.1	Anlage: Abgesaugte Volumen bei der Probenahme	A2
7.2	Anlage: Zusammenfassung der Laborprotokolle	А3
7.3	Anlage: Nachweis- und Bestimmungsgrenzen	А3
7.4	Anlage: Maßnahmen zur Qualitätssicherung	A 4
7.5	Anlage: Schreiberausdruck der kontinuierlichen Messgeräte	A5
7.6	Anlage: Gemessener Abgasvolumenstrom	A6

Bericht Nr. 3076, Anhang A2 von A6

HÜTTENTECHNISCHE VEREINIGUNG DER DEUTSCHEN GLASINDUSTRIE

7.1 Anlage: Abgesaugte Volumen bei der Probenahme

Westerwälder Blumentopf-Fabrik Spang GmbH & Co. KG Reingas Herdwagenofen

Datum: 08.05.2025

Abgesaugte Volumen partikelförmige Stoffe

Gasuhr	Uhrzeit	Filter	Gasuh	nr [m³]	PBlende	T _{Gasuhr}	V ₀ *)	O ₂ -	Zunahme
				i				Gehalt	Filtergewicht
Nr.		Nr.	Beginn	Ende	[mbar]	[°C]	[m ³]	[Vol%]	[mg]
9	12.00-12.30	5	66,6742	67,5054	910	20,4	0,79211	18,3	4,35
9	12.40-13.10	6	67,5054	68,3390	907	21,9	0,78930	18,3	0,07
9	13.30-14.00	7	68,3390	69,1822	896	23,8	0,78444	18,6	3,31
9	14.20-14.50	8	69,1822	70,0120	895	24,9	0,77526	20,5	2,89

^{*)} Inkl. der Absaugemengen zur Bestimmung der nasschemisch gemessenen Emissionskomponenten

Düse: 8 mm **Blendenkonstante:** 0,356 **Luftdruck:** 978 mbar

Abgesaugte Volumen gasförmiger Stoffe

Gasuhr	Uhrzeit	Gasuhr [m³]		Luftdruck	T _{Gasuhr}	O ₂ -Gehalt	V ₀
Nr.		Beginn	Ende	[mbar]	[°C]	[Vol%]	[m ³]
6	12.00-12.30	8,7810	8,9060	978	23,0	18,3	0,11268
6	12.40-13.10	8,9060	9,0330	978	26,3	18,3	0,11324
6	13.30-14.00	9,0330	9,1605	978	27,5	18,6	0,11322
6	14.20-14.50	9,1605	9,2940	978	28,3	20,5	0,11825

(Volumenangaben sind bezogen auf Normzustand)

Die Anlage wurde um 14.30 Uhr heruntergefahren. Entsprechend konnten die geplanten 6 diskontinuierlichen Messungen nicht durchgeführt werden. Eine gestartete 4. Messung (14.20-14.50) musste entsprechend abgebrochen werden. Die Analyseergebnisse sind der Vollständigkeit halber hier aufgeführt.

7.2 Anlage: Zusammenfassung der Laborprotokolle

Analyse gasförmiger Komponenten

Westerwälder Blumentopf-Fabrik Spang GmbH & Co. KG Reingas Herdwagenofen

Datum: 08.05.2025

Komponente	Aliquot	Molarität	Verbrauch	Gehalt	Absorptions-	Analysen-
1		1	Reagens		Rate erste	Gerätebezeichnung
Probenbez.	[ml]	Reagens	[ml]	[mg/Probe]	Flasche	
Feldblind - 1	20		0,025			
SO₂ / Rein - 1	20	0,005	0,150		*)	Dosimat 655 der
2	20	molare	0,160			Firma METROHM
3	20	Ba(ClO ₄) ₂	0,160			
4	20		0,165			
Feldblind - 2	20		0,030			
Feldblind - 1	20	-	-	0,039		
HF / Rein - 1	20	-	-	0,059	*)	pH/ISE-Messgerät
2	20	-	-	0,059		Typ: InoLab
3	20	-	-	0,058		pH/ION 7320
4	20	-	_	0,062		Firma WTW
Feldblind - 2	20	-	-	0,039		

^{*)} im zweiten Absorber wurde nur der Blindwert gefunden.

Die Anlage wurde um 14.30 Uhr heruntergefahren. Entsprechend konnten die geplanten 6 diskontinuierlichen Messungen nicht durchgeführt werden. Eine gestartete 4. Messung (14.20-14.50) musste entsprechend abgebrochen werden. Die Analyseergebnisse sind der Vollständigkeit halber hier aufgeführt.

7.3 Anlage: Nachweis- und Bestimmungsgrenzen

Partikelförmige Komponenten

Beim Gesamtstaub beträgt die Nachweisgrenze 0,3 mg/m³ (BG: 0,6 mg/m³).

Gasförmige Komponenten (Diskontinuierliche Ermittlung)

Entfällt.

Gasförmige Komponenten

Komponente	NWG [mg/Probe]	NWG [mg/m ³]	BG [mg/Probe]	BG [mg/m ³]
SO ₂	0,109	1,3	0,352	4,0
HF	0,006	0,1	0,019	0,3

Die relativen Nachweis- und Bestimmungsgrenzen richten sich nach der Absaugmenge. In der Regel werden 90 I je Probe abgesaugt.

Bericht Nr. 3076, Anhang A4 von A6

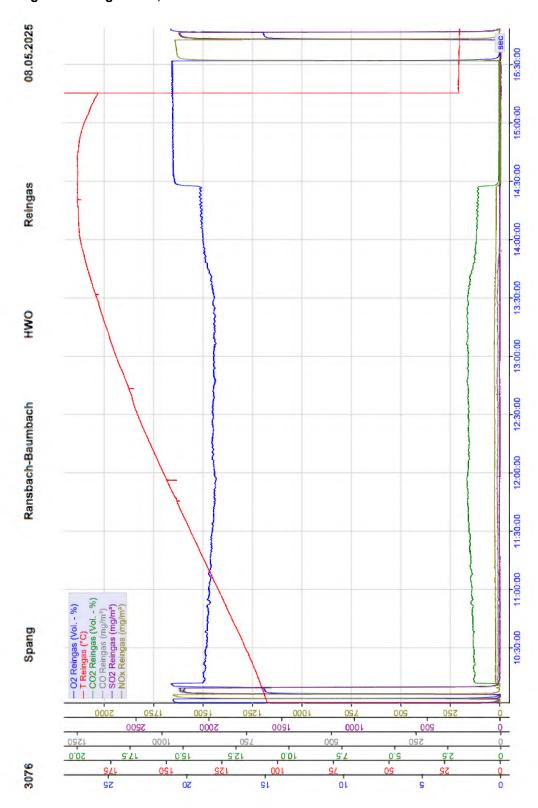
HÜTTENTECHNISCHE VEREINIGUNG DER DEUTSCHEN GLASINDUSTRIE

7.4 Anlage: Maßnahmen zur Qualitätssicherung

Automatische Messverfahren

Justierung / Verifizierung der	Arbeitstäglich
Messgeräte mit Prüfgasen	
Dichtheitsprüfung des	Jeweils an der Messstelle
Messaufbaus:	
Funktionsprüfung der Messgeräte:	Jährlich
Umfang der Funktionsprüfung:	Dichtigkeitsprüfung des Systems, Ermittlung der Tot- und Einstellzeit,
	Messwertübertragung, Überprüfung der Durchflussabhängigkeit, der
	Linearität, der Querempfindlichkeit sowie von Null- und
	Empfindlichkeitsdriften.

Gas- und dampfförmige Emissionen


Dichtigkeitsprüfung:	Bei jeder einzelnen Probenahme erfolgt eine Überprüfung des
	Sauerstoffgehalts am Ausgang der Absaugpumpe mit einem
	Handmessgerät und ein Vergleich des Messwertes mit der
	kontinuierlichen Sauerstoffmessung. Alle Verbindungsteile der
	Absorptionsstrecke werden während der Probenahmestelle mit Wasser
	bespritzt. Undichtigkeit werden aufgrund des Unterdruckes im System
	sofort erkannt.
Isokinetische Bedingung:	Siehe partikelförmige Emissionen.
Unsicherheiten:	Gasvolumen: < 2 % / Druck und Temperatur: < 1 %

Partikelförmige Emissionen (Gesamtstaub und Staubinhaltsstoffe)

Dichtigkeitsprüfung:	Vor Messbeginn: Ansaugdüse wird gasdicht verschlossen und nach
	dem Start der Pumpe ein Unterdruck (ca. 200 mbar) eingestellt. Die
	Gasuhr darf keinen Durchfluss anzeigen.
	Während der Probenahme: Bei jeder einzelnen Probenahme erfolgt
	eine Überprüfung des Sauerstoffgehalts am Ausgang der
	Absaugpumpe mit einem Handmessgerät und ein Vergleich des
	Messwertes mit der kontinuierlichen Sauerstoffmessung. Alle
	Verbindungsteile der Absorptionsstrecke werden während der
	Probenahmestelle mit Wasser bespritzt. Undichtigkeit werden aufgrund
	des Unterdruckes im System sofort erkannt.
Isokinetische Bedingung:	Im Fall des Nachschaltens von Waschflaschen hinter der Staubsonde
	werden für jeden Messpunkt im Messquerschnitt die isokinetischen
	Bedingungen errechnet und durch einen programmgesteuerten
	Absaugmengenregler gewährleistet.
Unsicherheiten:	Gasvolumen: < 2% / Druck und Temperatur: < 1 %

7.5 Anlage: Schreiberausdruck der kontinuierlichen Messgeräte

Westerwälder Blumentopf-Fabrik Spang GmbH & Co. KG Reingas Herdwagenofen, Datum: 08.05.2025

Bericht Nr. 3076, Anhang A6 von A6

HÜTTENTECHNISCHE VEREINIGUNG DER DEUTSCHEN GLASINDUSTRIE

7.6 Anlage: Gemessener Abgasvolumenstrom

Gemessener	Abgasvolumenstrom
	The State of Action 11 and 12

HVG-Bericht Nr. 3076	Firms	Ort	Anloge	Messort	Datum no ne ana
3U/6 Segeben:	Spang	Ransbach-Baumbach	Herdwagenofen	Reingas	08.05.202
-	n. Druck am Messpunkt (p _{dyn})	Anza	ihl der Messpunkte:	4	
1 / Achse 1	73,57 Pa	2 to the to	in act in acquainte.		
2 / Achse 1	71,40 Pa	Abmessunge	n des Abgaskanals:	ø 0,63	[m]
3 / Achse 2	68,63 Pa	7 millocoung o		2 0,00 [m]	
4 / Achse 2	73,77 Pa	Que	erschnittsfläche (A):	0,312	[m²]
			O _z -Gehalt:	18,3	[%]
			CO ₂ -Gehalt:	1,5	[%]
			Abgasfeuchte (w ₀):	0,0258	[kg/m³]
		А	.bgastemperatur (t):	140	[°C]
		Statische D	ruckdifferenz (p _{stat}):	2,1	[mbar]
		В	arometerstand (b ₀):	978	[mbar]
		Berechnungsformeln:			
		2 and a state of the state of t	$N_1 = 1 - \frac{O}{I}$	100	
		R	$v_{rr} = \frac{(1,429 \cdot O_2 + 1,9)}{100}$)77 · CO ₂) +	1,257 · N ₂
Ergebnisse: Messpunkt 1 / Achse 1 2 / Achse 1 3 / Achse 2 4 / Achse 2	Abgasgeschwindigkeit (v) 13,32 m/s 13,12 m/s 12,87 m/s 13,34 m/s	$\rho_{f} = \frac{\rho_{tr} + w_{0}}{1 + \frac{w_{0}}{0.804}}$ $V_{B,f} = v \cdot A \cdot 3600$	$\rho = \rho_f \cdot \frac{273 \cdot (b_0)}{1013 \cdot (2000)}$ $V_{N,f} = V_{n,f} \cdot \frac{273 \cdot (b_0)}{1013 \cdot (2000)}$	$ \begin{vmatrix} +p_{stat} \\ 273 \cdot t \end{vmatrix} $ $ \begin{vmatrix} (p_{stat}) \\ (p_{stat}) \\ (p_{stat}) \end{vmatrix} $ $ \begin{vmatrix} (p_{stat}) \\ (p_{stat}) \\ (p_{stat}) \end{vmatrix} $	$v = \sqrt{2 \cdot \frac{P_{dim}}{\rho}}$ $v = \sqrt{2 \cdot \frac{P_{dim}}{\rho}}$ $v = \frac{V_{A,d}}{1 + \frac{W_{b}}{0.804}}$
		Dichte, Norm, tr (ρ _{tr}):	1,299	[kg/m³]	
		Dichte, Norm, f (ρ _r):	1,284	[kg/m³]	
		Dichte, Betr, f (ρ):	0,821	[kg/m³]	
				Erw. MU	
		Mittl. Abgasgeschw.(v):	13,16	± 0,31	[m/s]
		Abgasvol., Betr, f (V _{B,f}):	14769	± 768	[m³/h]
		Abgasvol., N., f (V _{N,t}):	9446	± 490	[m³/h]
		Abgasvol., N., tr (V _{N,tr}):	9152	± 475	[m³/h]