TÜV RHEINLAND ENERGY & ENVIRONMENT GMBH

Bericht über die Durchführung von Emissionsmessungen an der Tafellackierung 4 (TLA 4) bei der thyssenkrupp Rasselstein GmbH für die Messkomponenten CO, NOx, Gesamt-C, Formaldehyd, Methylisobutylketon und O_2

TÜV-Bericht Nr.: EuL/21271135/B Köln, 23.09.2025

www.umwelt-tuv.de

tre-service@de.tuv.com

Die TÜV Rheinland Energy & Environment GmbH ist mit der Abteilung Immissionsschutz für die Arbeitsgebiete:

- Bestimmung der Emissionen und Immissionen von Luftverunreinigungen und Emissionen von Geruchsstoffen;
- Überprüfung des ordnungsgemäßen Einbaus und der Funktion sowie Kalibrierung kontinuierlich arbeitender Emissionsmessgeräte einschließlich Systemen zur Datenauswertung und Emissionsfernüberwachung;
- Feuerraummessungen;
- Eignungsprüfung von Messeinrichtungen zur kontinuierlichen Überwachung der Emissionen und Immissionen sowie von elektronischen Systemen zur Datenauswertung und Emissionsfernüberwachung
- Bestimmung der Schornsteinhöhen und Immissionsprognosen für Schadstoffe und Geruchsstoffe;
- Bestimmung der Emissionen und Immissionen von Geräuschen und Vibrationen, Bestimmung von Schallleistungspegeln und Durchführung von Schallmessungen an Windenergieanlagen

nach DIN EN ISO/IEC 17025 akkreditiert.

Die Akkreditierung hat die DAkkS-Registriernummer: D-PL-11120-02-00.

Die <u>auszugsweise</u> Vervielfältigung des Berichtes bedarf der schriftlichen Genehmigung.

TÜV Rheinland Energy & Environment GmbH D-51105 Köln, Am Grauen Stein, Tel: 0221 806-5200, Fax: 0221 806-1349

TÜV Rheinland Energy & Environment GmbH Luftreinhaltung

Seite 2 von 50

Bericht über die Durchführung von Emissionsmessungen an der Tafellackierung 4 (TLA 4) bei der thyssenkrupp Rasselstein GmbH für die Messkomponenten CO, NOx, Gesamt-C, Formaldehyd, Methylisobutylketon und O₂, Berichts-Nr.:EuL/21271135/B

Leerseite

Luftreinhaltung

Bericht über die Durchführung von Emissionsmessungen an der Tafellackierung 4 (TLA 4) bei der thyssenkrupp Rasselstein GmbH für die Messkomponenten CO, NOx, Gesamt-C, Formaldehyd, Methylisobutylketon und O_2 , Berichts-Nr.:EuL/21271135/B

Seite 3 von 50

Bericht über die Durchführung von Emissionsmessungen an der Tafellackierung 4 (TLA 4) bei der thyssenkrupp Rasselstein GmbH für die Messkomponenten CO, NOx, Gesamt-C, Formaldehyd, Methylisobutylketon und O₂

Name der nach § 29b BlmSchG

bekannt gegebenen Stelle: TÜV Rheinland

Energy & Environment GmbH

Befristung der Bekanntgabe: 03.03.2028

Berichtsnummer / Datum: EuL/21271135/B 23.09.2025

Betreiber: thyssenkrupp Rasselstein GmbH

Koblenzer Straße 141 56626 Andernach

Standort: thyssenkrupp Rasselstein GmbH

Koblenzer Straße 141 56626 Andernach

Kundennummer: 1772072

Messtermin: 25.06.2025 -26.06.2025

01.07.2025

Berichtsumfang: insgesamt 50 Seiten

Anhang ab Seite 31

Anlagenzuordnung: TA Luft

Luftreinhaltung

Seite 4 von 50

Bericht über die Durchführung von Emissionsmessungen an der Tafellackierung 4 (TLA 4) bei der thyssenkrupp Rasselstein GmbH für die Messkomponenten CO, NOx, Gesamt-C, Formaldehyd, Methylisobutylketon und O₂, Berichts-Nr.:EuL/21271135/B

Leerseite

Luftreinhaltung

Bericht über die Durchführung von Emissionsmessungen an der Tafellackierung 4 (TLA 4) bei der thyssenkrupp Rasselstein GmbH für die Messkomponenten CO, NOx, Gesamt-C, Formaldehyd, Methylisobutylketon und O_2 , Berichts-Nr.:EuL/21271135/B

Seite 5 von 50

Zusammenfassung

TNV

Quelle 163

Drahtrahmenvorwärmung

Quelle 164

Kühlzone 1

Quelle 165

Kühlzone 2

Quelle 166

Anlagenzustand:

Es wurden 3 Einzelmessungen bei maximal möglicher

Leistung vorgenommen.

Der angegebene maximale Messwert beschreibt den

höchsten Wert aus allen Messungen.

TNV Quelle 163

Mess- komponente y	Einheit	Max. Mess- wert y _{max} bezogen auf Bezugswert	Erw. Mess- unsicherheit (U _p , _{0,95})	y _{max} - U _{0,95}	y _{max} + U _{0,95}	Grenzwert
NOx	g/m³	0,048	0,001	0,05	0,05	0,10
СО	g/m³	0,060	0,002	0,06	0,06	0,10
Staub	mg/m³	<0,3	0,07	<0,2	<0,4	3
Formaldehyd	mg/m³	0,2	0,06	0,1	0,3	2
Methylisobutylketon	mg/m³	0,2	0,06	0,1	0,3	20
Organ. Stoffe, Gesamt-C	mg/m³	0,8	0,07	0,7	0,9	20
Drahtrahmenvorwärmung	g Quelle 164					
Mess- komponente y	Einheit	Max. Mess- wert y _{max} bezogen auf Bezugswert	Erw. Mess- unsicherheit (Up, 0,95)	y _{max} - U _{0,95}	y _{max} + U _{0,95}	Grenzwert
NO _X	g/m³	0,002	0,001	0,001	0,003	0,10
CO	g/m³	0,005	0,0001	0,005	0,005	0,10
Staub	mg/m³	0,5	0,04	0,5	0,5	3
Formaldehyd	mg/m³	0,3	0,06	0,2	0,4	2
Methylisobutylketon	mg/m³	<0,2	0,06	<0,1	<0,3	20
Organ. Stoffe, Gesamt-C	mg/m³	2,1	0,1	2	2	20

Luftreinhaltung

Seite 6 von 50

Bericht über die Durchführung von Emissionsmessungen an der Tafellackierung 4 (TLA 4) bei der thyssenkrupp Rasselstein GmbH für die Messkomponenten CO, NOx, Gesamt-C, Formaldehyd, Methylisobutylketon und O₂, Berichts-Nr.:EuL/21271135/B

Kühlzone 1 Quelle 165		1	1			_
Mess- komponente y	Einheit	Max. Mess- wert y _{max} bezogen auf Bezugswert	Erw. Mess- unsicherheit (Up, 0,95)	y _{max} - U _{0,95}	y _{max} + U _{0,95}	Grenzwert
Staub	mg/m³	<0,3	0,02	<0,3	<0,3	3
Formaldehyd	mg/m³	<0,3	0,07	<0,2	<0,4	2
Methylisobutylketon	mg/m³	<0,3	0,07	<0,2	<0,4	20
Organ. Stoffe, Gesamt-C	mg/m³	3,6	0,1	4	4	20
Kühlzone 2 Quelle 166						
Mess- komponente y	Einheit	Max. Mess- wert y _{max} bezogen auf Bezugswert	Erw. Mess- unsicherheit (Up, 0,95)	ymax - U _{0,95}	y _{max} + U _{0,95}	Grenzwert
Staub	mg/m³	0,4	0,04	0,4	0,4	3
Formaldehyd	mg/m³	<0,3	0,07	<0,2	<0,4	2
Methylisobutylketon	mg/m³	<0,3	0,07	<0,2	<0,4	20
Organ. Stoffe, Gesamt-C	mg/m³	3,7	0,1	4	4	20

Die Emissionswerte beziehen sich auf wasserdampffreies Abgas im Normzustand (273 K, 101,3 kPa) und den oben angegebenen Sauerstoffbezugswert.

Luftreinhaltung

Bericht über die Durchführung von Emissionsmessungen an der Tafellackierung 4 (TLA 4) bei der thyssenkrupp Rasselstein GmbH für die Messkomponenten CO, NOx, Gesamt-C, Formaldehyd, Methylisobutylketon und O_2 , Berichts-Nr.:EuL/21271135/B

Seite 7 von 50

Inhaltsverzeichnis

		Seite
Zusamm	enfassung	5
Inhaltsve	erzeichnis	7
1 Messa	ufgabe	9
1.1	Auftraggeber:	9
1.2	Betreiber:	9
1.3	Standort:	9
1.4	Anlage:	9
1.5	Datum der Messung:	9
1.6	Anlass der Messung:	9
1.7	Aufgabenstellung:	9
1.8	Messkomponenten und Messgrößen:	9
1.9	Ortsbesichtigung vor Messdurchführung:	9
1.10	Messplanabstimmung:	9
1.11	An der Messung beteiligte Personen:	9
1.12	Beteiligte weitere Institute:	10
1.13	Fachlich Verantwortliche:	10
2 Besch	reibung der Anlage / gehandhabte Stoffe	11
2.1	Bezeichnung der Anlage:	11
2.2	Beschreibung der Anlage	11
2.3	Beschreibung der Emissionsquellen nach Betreiberangaben	11
2.4	Angabe der laut Genehmigungsbescheid möglichen Einsatzstoffe	11
2.5	Betriebszeiten nach Betreiberangaben	11
2.6	Einrichtung zur Erfassung und Minderung der Emissionen	12
3 Besch	reibung der Probenahmestelle	14
3.1	Lage des Messquerschnittes	14
3.2	Lage der Messpunkte im Messquerschnitt	16
4 Mess-	und Analysenverfahren, Geräte	17
4.1	Abgasrandbedingungen	17
4.2	Automatische Messverfahren	18
4.4	Messverfahren für partikelförmige Emissionen	23
4.5	Besondere hochtoxische Abgasinhaltsstoffe:	23
4.6	Geruchsemissionen:	23
5 Betriel	oszustand der Anlage während der Messungen	24
5.1	Produktionsanlage	24
5.2	Abgasreinigungsanlage	24
6 Zusam	menstellung der Messergebnisse und Diskussion	25
6.1	Bewertung der Betriebsbedingungen während der Messungen	25
6.2	Messergebnisse	25
6.3	Messunsicherheiten	29
6.4	Diskussion der Ergebnisse	30
7 Übersi	cht über den Anhang	30

TÜV Rheinland Energy & Environment GmbH Luftreinhaltung

Seite 8 von 50

Bericht über die Durchführung von Emissionsmessungen an der Tafellackierung 4 (TLA 4) bei der thyssenkrupp Rasselstein GmbH für die Messkomponenten CO, NOx, Gesamt-C, Formaldehyd, Methylisobutylketon und O₂, Berichts-Nr.:EuL/21271135/B

Leerseite

Luftreinhaltung

Bericht über die Durchführung von Emissionsmessungen an der Tafellackierung 4 (TLA 4) bei der thyssenkrupp Rasselstein GmbH für die Messkomponenten CO, NOx, Gesamt-C, Formaldehyd, Methylisobutylketon und O_2 , Berichts-Nr.:EuL/21271135/B

Seite 9 von 50

1 Messaufgabe

1.1 Auftraggeber: thyssenkrupp Rasselstein GmbH

Koblenzer Straße 141 56626 Andernach

1.2 Betreiber: thyssenkrupp Rasselstein GmbH

Koblenzer Straße 141 56626 Andernach

Ansprechpartner:

Telefon:

1.3 Standort: ThyssenKrupp Rasselstein GmbH

Koblenzer Straße 141 56626 Andernach

1.4 Anlage: Lackieranlage gemäß Nr. 5.1, des Anhangs 1

zur 4. BlmSchV

Betreiber-/Arbeitsstätten-Nr.: keine Betreiberangabe

Anlagen-Nr.: TLA 4

1.5 Datum der Messung: 25.06.2025 -26.06.2025

01.07.2025

Datum der letzten Messung: nicht zutreffend, da Erstmessung

Datum der nächsten Messung: 06 / 2026

1.6 Anlass der Messung: Wiederkehrende Messung im Rahmen be-

hördlicher Auflagen

1.7 Aufgabenstellung: Feststellung der Emissionen gemäß

TA Luft und Genehmigungsbescheid

Genehmigungsbehörde: SGD Nord, Gewerbeaufsicht Koblenz

Genehmigungsbescheid: Az.: 32.32/02/2024 vom

24.02.2025

Die Messung der Parameter Formaldehyd und Methylisobutylketon ergeben sich aus den Anforderungen der 31. BImSchV.

Amtliche Messung: ja

1.8 Messkomponenten und Messgrößen: CO, NOx, Gesamt-C, Formaldehyd,

Methylisobutylketon und O₂ sowie CO₂, Feuchte, Volumenstrom, Druck und Tempe-

ratur

1.9 Ortsbesichtigung vor durchgeführt am 06.05.2025

Messdurchführung:

1.10 Messplanabstimmung: mit dem Betreiber; die länderspezifische An-

meldung wurde am 16.06.2025 an die Fach-

behörde versendet

1.11 An der Messung beteiligte Personen:

Seite 10 von 50

TÜV Rheinland Energy & Environment GmbH Luftreinhaltung

Gruppe I Nr. 1 (G, P, Sp) gemäß Anlage 1 zur 41. BImSchV

Bericht über die Durchführung von Emissionsmessungen an der Tafellackierung 4

eite 10 von 50		ei der thyssenkrupp Rasselstein GmbH für die Messkomponenten C NOx, Gesamt-C, Formaldehyd, Methylisobutylketon und Berichts-Nr.:EuL/2127113	O ₂ ,
1.12	Beteiligte weitere Institute:	keine	
1.13	Fachlich Verantwortliche:		

Telefon-Nr.:

Email-Adresse:

Luftreinhaltung

Bericht über die Durchführung von Emissionsmessungen an der Tafellackierung 4 (TLA 4) bei der thyssenkrupp Rasselstein GmbH für die Messkomponenten CO, NOx, Gesamt-C, Formaldehyd, Methylisobutylketon und O_2 , Berichts-Nr.:EuL/21271135/B

Seite 11 von 50

2 Beschreibung der Anlage / gehandhabte Stoffe

2.1 Bezeichnung der Anlage: Tafellackieranlage 4

2.2 Beschreibung der Anlage

Die Rasselstein GmbH betreibt auf ihrem Werksgelände in Andernach zwei Anlagen zum Bedrucken und Lackieren von Blechtafeln (TLA 2 und TLA 4). Gegenstand der Messung ist nur die TLA 4. Die Tafeln werden auf einer Bandanlage lackiert auf Drahtgestellen abgelegt und durchlaufen dann einen Durchlauftrockner. Die Abgase des Trockners werden permanent abgesaugt, in einer thermischen Nachverbrennungsanlage (TNV) nachverbrannt und über einen Kamin ins Freie geleitet. Nach dem Durchlauftrockner sind aufeinanderfolgend zwei Kühlzonen (Kühlzone 1 und 2) angeordnet, um mögliche Restemissionen zu erfassen und über zwei separate Kamine über abzuleiten. Die leeren Drahtkörbe fahren unterhalb des Durchlauftrockners zurück und werden durch die Abwärme des Durchlauftrockners vor der Neubestückung bereits vorgewärmt (Drahtvorwärmung). Die Drahtvorwärmung wird ebenfalls abgesaugt und die Abgase werden über einen Kamin über Dach abgeleitet.

Bezeichnung: TLA 4

Hersteller: König & Bauer GmbH

Baujahr: 2024 Bau-Nr.: 723009

maximaler Durchsatz: 7.500 Tafeln/h bzw. 105 kg/h Lösemittel

2.3 Beschreibung der Emissionsquellen nach Betreiberangaben

Quellen Nr.:	Quelle163	Quelle164	Quelle165	Quelle166
Bezeichnung der Quelle:	Kamin TNV	Kamin Draht- rahmenvor- wärmung	Kamin Kühl- zone 1	Kamin Kühl- zone 2
Höhe über Grund in m:	16,4	16,4	16,4	16,4
UTM-Koordinaten:	32U 388997.526 5587555.598s ss	32U 388978.090 5587574.026	32U 388969.092 5587592.124	32U 388965.952 5587594.860
Bauausführung:	Stahl	Stahl	Stahl	Stahl

2.4 Angabe der laut Genehmigungsbescheid möglichen Einsatzstoffe

Einsatzstoffe: Weißblech, Lacke, Erdgas als Brennstoff

2.5 Betriebszeiten nach Betreiberangaben

Gesamtbetriebszeit, h/a:	ca. 6.000 h/a	ca. 6.000 h/a	ca. 6.000 h/a	ca. 6.000 h/a
täglich, h:	ca. 24 h	ca. 24 h	ca. 24 h	ca. 24 h
wöchentlich, h:	ca. 168 h	ca. 168 h	ca. 168 h	ca. 168 h

Luftreinhaltung

Seite 12 von 50

Bericht über die Durchführung von Emissionsmessungen an der Tafellackierung 4 (TLA 4) bei der thyssenkrupp Rasselstein GmbH für die Messkomponenten CO, NOx, Gesamt-C, Formaldehyd, Methylisobutylketon und O₂, Berichts-Nr.:EuL/21271135/B

2.6 Einrichtung zur Erfassung und Minderung der E	Emissionen	
---	------------	--

2.6.1 Einrichtung zur Erfassung der Emissionen

2.6.1.1 Art der Emissionserfassung: geschlossenes System

2.6.1.2 Ventilatorkenndaten

TNV

Ventilator

Hersteller: Eletror

Typ: CFXH 450-C-LG90-280S

Baujahr: 2024

Volumenstrom: 24.260 m³/h

Drahtvorwärmung

Hersteller: König & Bauer

Typ: VOR 450E

Baujahr: 2024

Strömungsgeschwindigkeit: 2,3 m³/s

Kühlzone 1

Hersteller: König & Bauer

Typ: VOR 630E FU

Baujahr: 2024

Strömungsgeschwindigkeit: 5,5 m³/s

Kühlzone 2

Hersteller: König & Bauer

Typ: VOR 710 FU

Baujahr: 2024

Strömungsgeschwindigkeit: 7,9 m³/s

Luftreinhaltung

Bericht über die Durchführung von Emissionsmessungen an der Tafellackierung 4 (TLA 4) bei der thyssenkrupp Rasselstein GmbH für die Messkomponenten CO, NOx, Gesamt-C, Formaldehyd, Methylisobutylketon und O_2 , Berichts-Nr.:EuL/21271135/B

Seite 13 von 50

2.6.2 Einrichtung zur Verminderung der

Emissionen: TNV

Die Abgase des Durchlauftrockners werden über eine thermische Nachverbrennungsanlage (TNV) geleitet.

Thermische Nachverbrennung

Hersteller: König & Bauer
Typ: KXB 12 2.0
Fabrikats Nummer: FA 250069

Baujahr: 2024

Nennleistung: 1.200 kW
Brennstoff: Erdgas

Die jeweiligen Abgase der Drahtvorwärmung und der Kühlzonen werden ohne weiter Behandlung über Dach geleitet.

2.6.3 Einrichtung zur Verdünnung des

Abgases: keine

Seite 14 von 50

Bericht über die Durchführung von Emissionsmessungen an der Tafellackierung 4 (TLA 4) bei der thyssenkrupp Rasselstein GmbH für die Messkomponenten CO, NOx, Gesamt-C, Formaldehyd, Methylisobutylketon und O₂, Berichts-Nr.:EuL/21271135/B

3 Beschreibung der Probenahmestelle

3.1 Lage des Messquerschnittes

3.1.1 Lage und Abmessungen: siehe Tabelle 3.1

Die Messstellen befinden sich

Tabelle 3.1: Angaben zu Kapitel 3.1.1, 3.1.3, 3.1.4				
Anlage	Quelle 163	Quelle 164	Quelle 165	Quelle 166
Abmessungen des Messquerschnittes:	Ø 40 cm	Ø 40 cm	Ø 90 cm	Ø 90 cm
gerade Einlaufstrecke, m:	0,1	0,8	2,0	2,0
gerade Auslaufstrecke, m:	0,1	0,5	1,0	1,0
Strecke bis zur Mündung, m:	≥ 5 Dh	≥ 5 Dh	ca. 3	ca. 3
Empfehlung ≥ 5·Dh Einlauf und 2·Dh Auslauf (5·Dh vor Mündung):	nicht erfüllt	nicht erfüllt	nicht erfüllt	nicht erfüllt
Messöffnungen:				
Anzahl der Messöffnungen:	2	2	2	2
Lage der Messöffnungen:	in einer Ebene, 90° versetzt	in einer Ebene, 90° versetzt	in einer Ebene, 90° versetzt	in einer Ebene, 90° versetzt
Lichter Durchmesser, mm:	3"	3"	3"	3"
Stutzenlänge, mm:	180	180	70	70
Strömungsbedingungen im Messqu	erschnitt			
Winkel zwischen Gasstrom/Mittelachse Abgaskanal < 15°:	erfüllt	erfüllt	erfüllt	erfüllt
keine negative lokale Strömung:	erfüllt	erfüllt	erfüllt	erfüllt
Verhältnis von höchster zu niedrigster Geschwindigkeit < 3:1:	erfüllt	erfüllt	erfüllt	erfüllt
Mindestgeschwindigkeit (in Abhängigkeit vom verwendeten Messverfahren):	erfüllt	erfüllt	erfüllt	erfüllt

Luftreinhaltung

Bericht über die Durchführung von Emissionsmessungen an der Tafellackierung 4 (TLA 4) bei der thyssenkrupp Rasselstein GmbH für die Messkomponenten CO, NOx, Gesamt-C, Formaldehyd, Methylisobutylketon und O_2 , Berichts-Nr.:EuL/21271135/B

Seite 15 von 50

3.1.2 Arbeitsfläche und Messbühne

Quelle 163, Quelle 164, Quelle 165, Quelle

166:

Die Arbeitsflächen sind ausreichend groß und die Messöffnungen sind gefahrlos zu erreichen. Eine ausreichende Rückenfreiheit zum Einführen der Entnahmesonden ist gegeben. Ein Wetterschutz ist sowohl an den Messöffnungen als auch am Aufstellort vorhanden.

3.1.3 Messöffnungen: siehe Tabelle 3.1

3.1.4 Strömungsbedingungen im Messquer-

schnitt:

siehe Tabelle 3.1

3.1.5 Zusammenfassende Beurteilung der Messbedingungen

Q 163+ Q 164

Messbedingungen nach DIN EN 15259: Die Anforderungen werden eingehalten auch

wenn die Empfehlungen nicht erfüllt werden.

Q 165+ Q 166

Messbedingungen nach DIN EN 15259: Die Anforderungen werden eingehalten auch

wenn die Empfehlungen nicht erfüllt werden.

Q 163+ Q 164 ergriffene Maßnahmen: Die Messpunkteanzahl wurde von 2 auf

4 erhöht, da die Empfehlung an die gerade Strömungsstrecke nicht eingehalten wurde.

Q 165+ Q 166 ergriffene Maßnahmen: Die Messpunkteanzahl wurde von 4 auf

8 erhöht, da die Empfehlung an die gerade Strömungsstrecke nicht eingehalten wurde.

zu erwartende Auswirkungen auf das Er-

gebnis:

Die Anforderungen an die Strömungsbedingen wurden auch mit erhöhter Messpunktzahl erfüllt. Daher sind keine Auswirkungen auf

die Messunsicherheit zu erwarten.

TÜV Rheinland Energy & Environment GmbH Luftreinhaltung

Seite 16 von 50

Bericht über die Durchführung von Emissionsmessungen an der Tafellackierung 4 (TLA 4) bei der thyssenkrupp Rasselstein GmbH für die Messkomponenten CO, NOx, Gesamt-C, Formaldehyd, Methylisobutylketon und O₂, Berichts-Nr.:EuL/21271135/B

3.2 Lage der Messpunkte im Messquerschnitt

3.2.1 Darstellung der Lage der Messpunkte im Messquerschnitt:

siehe Tabelle 3.2

3.2.2 Homogenitätsprüfung

Tabelle 3.2: Angaben zu Kapitel 3.2.1 und 3.2.2					
Anlage	Q 163	Q 164	Q 165	Q 166	
Lage der Messpunkte im Messquerschnitt:					
Achsen:	2	2	2	2	
Messpunkte je Achse:	2	2	4	4	
Abstand der Messpunkte vom Kanalrand:	6 / 34 cm	6 / 34 cm	6 / 23 / 68 / 84 cm	6 / 23 / 68 / 84 cm	
Homogenitätsprüfung:	ohne, da Netz- messungen vorgenommen wurden	ohne, da Netz- messungen vorgenommen wurden	ohne, da Netz- messungen vorgenommen wurden	ohne, da Netz- messungen vorgenommen wurden	

3.2.3 Komponentenspezifische Darstellung

Messkom- ponente	Anzahl der Messachsen	Anzahl der Messpunkte je Messachse	Homogenitäts- prüfung durchgeführt	Beliebiger Messpunkt	Repräsentati- ver Messpunkt
NOx	1	1			
СО	1	1			
O ₂	1	1			
CO ₂	1	1			
Geschwindig- keit	s. 3.2.1	s. 3.2.1			

Luftreinhaltung

Bericht über die Durchführung von Emissionsmessungen an der Tafellackierung 4 (TLA 4) bei der thyssenkrupp Rasselstein GmbH für die Messkomponenten CO, NOx, Gesamt-C, Formaldehyd, Methylisobutylketon und O_2 , Berichts-Nr.:EuL/21271135/B

Seite 17 von 50

4 Mess- und Analysenverfahren, Geräte

4.1 Abgasrandbedingungen

4.1.1 Strömungsgeschwindigkeit

Ermittlungsmethode: Staudrucksonde mit Mikromanometer

Messverfahren: DIN EN ISO 16911-1, Juni 2013

Messeinrichtung: SI Special Instruments / LPU 3 Profi

Messbereich: 0 - 5000 Pa

Berechnungsverfahren: gemäß DIN EN ISO 16911-1 ohne Berück-

sichtigung von Wandeffekten

kontinuierliche Ermittlung: nei

4.1.2 Statischer Druck im Abgaskamin: Manometer nach 4.1.1

4.1.3 Luftdruck in Höhe der Probenahmestelle

Messeinrichtung: Greisinger / GPB 3300

4.1.4 Abgastemperatur:

Messeinrichtung: Messdatenerfassung wie in 4.2.1.8 mit NiCr-/Ni-Thermoelement, Typ K

Messbereich: -200 bis 1370°C

kontinuierliche Ermittlung: ja

4.1.5 Wasserdampfanteil im Abgas (Abgasfeuchte)

Messverfahren Q163+Q164: Adsorption an Silikagel und nachfolgende

gravimetrische Bestimmung gemäß DIN EN

14790, Mai 2017

Messeinrichtung: Kern / 572-39 Messbereich: 0 - 4200 g

Messverfahren Q165+Q166: Ermittlung über psychrometrische Tempera-

turdifferenz (2-Thermometermethode)

Messeinrichtung: Voltcraft / K 102 Messbereich: 0 - 1370°C

4.1.6 Abgasdichte: berechnet unter Berücksichtigung der Abgas-

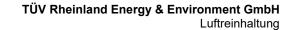
bestandteile an Sauerstoff (O₂), Kohlendioxid (CO₂), Stickstoff (mit 0,933 % Argon), Abgasfeuchte (Wasserdampfanteil im Abgas) sowie der Abgastemperatur und Druckverhältnisse

im Kanal.

4.1.7 Abgasverdünnung: nicht festgestellt

4.1.8 Volumenstrom

mittlere Abgasgeschwindigkeit: s. 4.1.1


Querschnittsfläche: Längenmessung der Messachsen und Stut-

zen mit einer Messstange, Abmessen der

Messstange mit Gliedermaßstab

Fläche der Volumenstrommesseinrichtung

zu Querschnittsfläche: < 5 %

Seite 18 von 50

Bericht über die Durchführung von Emissionsmessungen an der Tafellackierung 4 (TLA 4) bei der thyssenkrupp Rasselstein GmbH für die Messkomponenten CO, NOx, Gesamt-C, Formaldehyd, Methylisobutylketon und O₂, Berichts-Nr.:EuL/21271135/B

Quarzwatte, beheizt durch Abgas

4.2	Automatische Messverfahren	
4.2.1	Messkomponente:	Kohlenmonoxid (CO)
4.2.1.1	Messverfahren:	Bestimmung der Massenkonzentration von Kohlenmonoxid – Standardreferenzverfahren: Nicht-dispersive Infrarotspektrometrie gemäß DIN EN 15058, Mai 2017
4.2.1.2	Analysator:	Horiba / PG-350 E Zertifizierung nach DIN EN 15267-3, Einsatzfähigkeit des Geräts für den mobilen Einsatz wurde verifiziert.
4.2.1.3	eingestellter Messbereich in ppm:	0 - 200
4.2.1.4	Gerätetyp eignungsgeprüft:	siehe unter 4.2.1.2
4.2.1	Messkomponente:	Stickstoffoxide (NOx)
4.2.1.1	Messverfahren:	Bestimmung der Massenkonzentration von Stickstoffoxiden – Standardreferenzverfah- ren: Chemilumineszenz gemäß DIN EN 14792, Mai 2017
4.2.1.2	Analysator:	Horiba / PG-350 E Zertifizierung nach DIN EN 15267-3, Einsatzfähigkeit des Geräts für den mobilen Einsatz wurde verifiziert.
4.2.1.3	eingestellter Messbereich in ppm:	0 - 200
4.2.1.4	Gerätetyp eignungsgeprüft:	siehe unter 4.2.1.2
4.2.1	Messkomponente:	Sauerstoff (O ₂)
4.2.1.1	Messverfahren:	Bestimmung der Volumenkonzentration von Sauerstoff, Standardreferenzverfahren: Para- magnetismus gemäß DIN EN 14789, Mai 2017
4.2.1.2	Analysator:	Horiba / PG-350 E Zertifizierung nach DIN EN 15267-3, Einsatzfähigkeit des Geräts für den mobilen Einsatz wurde verifiziert.
4.2.1.3	eingestellter Messbereich in Vol%:	0 - 25
4.2.1.4	Gerätetyp eignungsgeprüft:	siehe unter 4.2.1.2
4.2.1	Messkomponente:	Kohlendioxid (CO ₂)
4.2.1.1	Messverfahren:	NDIR / DIN CEN/TS 17405, November 2020
4.2.1.2	Analysator:	Horiba / PG-350 E Zertifizierung nach DIN EN 15267-3, Einsatzfähigkeit des Geräts für den mobilen Einsatz wurde verifiziert.
4.2.1.3	eingestellter Messbereich in Vol%:	0 - 20
	Beschreibung 4.2.1.5 bis 4.2.1.7 für CO, I	NOx, CO ₂ , O ₂
4.2.1.5	Probenahme und Probenaufbereitung	
	Entnahmesonde:	Titan, beheizt auf 180°C
	maximale Eintauchtiefe in m:	0,34

Staubfilter:

Luftreinhaltung

Bericht über die Durchführung von Emissionsmessungen an der Tafellackierung 4 (TLA 4) bei der thyssenkrupp Rasselstein GmbH für die Messkomponenten CO, NOx, Gesamt-C, Formaldehyd, Methylisobutylketon und O2, Berichts-Nr.:EuL/21271135/B

Seite 19 von 50

Probengasleitung vor Gasaufbereitung: beheizt auf 180°C

Probengasleitung vor Gasaufbereitung: 15 Länge in m: Probengasleitung nach Gasaufbereitung: Länge in m: 1

Messgasaufbereitung

Messgaskühler: Horiba / PSS 5H

≤ 4°C Temperatur geregelt auf:

4.2.1.6 Überprüfung von Null- und Referenzpunkt mit Prüfgasen

> Nullgas: N_2 N_2

Mischprüfgas: NO/CO/CO₂ in N₂ O₂ Außenluft Konzentration: NO 20,94 Vol.-% 219 mg/m³

> CO 198.4 mg/m³ 15,13 Vol-% CO_2

in % 2 Unsicherheit: Flaschen ID-Nummer: 17585

Hersteller: Nippon Gases Herstelldatum: 06.08.2024

36 Stabilitätsgarantie in Monaten: rückführbar zertifiziert:

Überprüfung des Zertifikates durch: TÜV Rheinland 16.01.2025

Prüfgas und Nullgas durch das gesamte Probenahmesystem incl. Sonde und Messgasaufbereitung aufgegeben:

ja ja

4.2.1.7 Einstellzeit des ges. Messaufbaus in s: 50

(Prüfgas über die Entnahmesonde)

4.2.1 Messkomponente: Gesamt-C (FID)

4.2.1.1 Messverfahren: Bestimmung der Massenkonzentration des

gesamten gasförmigen organisch gebundenen Kohlenstoffs, Kontinuierliches Verfahren mit dem Flammenionisationsdetektors (FID)

gemäß DIN EN 12619, April 2013

4.2.1.2 Analysator: M & A / Thermo FID Eignungsprüfung auf Ba-

sis der BEP ohne Zertifizierung, Einsatzfähig-

keit des Geräts für den mobilen Einsatz

wurde verifiziert.

4.2.1.3 0 - 60 mg C/m³ eingestellter Messbereich:

4.2.1.4 Gerätetyp eignungsgeprüft: siehe unter 4.2.1.2

4.2.1.5 Probenahme und Probenaufbereitung

> Entnahmesonde: Edelstahl, beheizt auf °C

TÜV Rheinland Energy & Environment GmbH Luftreinhaltung

Seite 20 von 50

Bericht über die Durchführung von Emissionsmessungen an der Tafellackierung 4 (TLA 4) bei der thyssenkrupp Rasselstein GmbH für die Messkomponenten CO, NOx, Gesamt-C, Formaldehyd, Methylisobutylketon und O₂,

Berichts-Nr.:EuL/21271135/B

maximale Eintauchtiefe in m: 0,84

Staubfilter: M&C PSP 4000-H/C Messgasfilter Typ SP-

2K, beheizt auf 180°C

Probengasleitung vor Gasaufbereitung: beheizt auf °C 180
Probengasleitung vor Gasaufbereitung: Länge in m: 15

Probengasleitung nach Gasaufbereitung: nicht zutreffend Messgasaufbereitung nicht zutreffend

4.2.1.6 Überprüfung von Null- und Referenzpunkt mit Prüfgasen

Nullgas: synthetische Luft

Prüfgas und Trägergas: Propan in SL Konzentration: in mg C/m³ 31,5 ppm

Unsicherheit: in % 2
Flaschen ID-Nummer: 17183

Hersteller: Nippon Gases
Herstelldatum: 10.08.2022

Stabilitätsgarantie in Monaten: 60 rückführbar zertifiziert: ja

Überprüfung des Zertifikates durch: TÜV Rheinland am: 16.11.2022

Prüfgas und Nullgas durch das gesamte Probenahmesystem incl. Sonde und Messgasaufbereitung aufgegeben:

Einstellzeit des Messaufbaus in s: 13

(Prüfgas über die Entnahmesonde)

4.2.1.8 Messwerterfassungssystem: Yokogawa / DX1012

Erfassungsprogramm (Software): Yokogawa / Excel

4.2.1.9 Maßnahmen zur Qualitätssicherung

Ergebnis der Überprüfung des Nullpunkts und des Referenzpunkts nach der Messung:

ja

Q163

4.2.1.7

Komponente	Drift am Nullpunkt	Drift am Referenzpunkt
СО	< 2,0 %	< 5,0 %
NO	< 2,0 %	< 2,0 %
Gesamt-C	< 2,0 %	< 2,0 %
O ₂	< 2,0 %	< 2,0 %
CO ₂	< 2,0 %	< 2,0 %

Luftreinhaltung

Bericht über die Durchführung von Emissionsmessungen an der Tafellackierung 4 (TLA 4) bei der thyssenkrupp Rasselstein GmbH für die Messkomponenten CO, NOx, Gesamt-C, Formaldehyd, Methylisobutylketon und O_2 , Berichts-Nr.:EuL/21271135/B

Seite 21 von 50

Q164

Komponente	Drift am Nullpunkt	Drift am Referenzpunkt
СО	< 2,0 %	< 2,0 %
NO	< 2,0 %	< 2,0 %
Gesamt-C	< 2,0 %	< 2,0 %
O ₂	< 2,0 %	< 2,0 %
CO ₂	< 2,0 %	< 2,0 %

Q165

Komponente	Drift am Nullpunkt	Drift am Referenzpunkt
Gesamt-C	< 2,0 %	< 2,0 %

Q166

Komponente	Drift am Nullpunkt	Drift am Referenzpunkt
Gesamt-C	< 2,0 %	< 2,0 %

Eine rechnerische Berücksichtigung der Null- und Referenzpunktdrift war nur an der Quelle 163 erforderlich.

Luftreinhaltung

Seite 22 von 50

Bericht über die Durchführung von Emissionsmessungen an der Tafellackierung 4 (TLA 4) bei der thyssenkrupp Rasselstein GmbH für die Messkomponenten CO, NOx, Gesamt-C, Formaldehyd, Methylisobutylketon und O₂, Berichts-Nr.:EuL/21271135/B

4.3.1 Messkomponente: Formaldehyd und Methylisobutylketon

4.3.1.1 Messverfahren: Messen aliphatischer und aromatischer Alde-

hyde und Ketone nach dem DNPH-Verfahren, Gaswaschflaschen gemäß VDI 3862, Blatt 2, Dezember 2000

4.3.1.2 Probenahme und Probenaufbereitung

Entnahmerohr: Titan, beheizt auf 180°C

maximale Eintauchtiefe in m: 0,84

Partikelfilter: Quarzwatte (Heraeus, 8 µm) im Titanrohr

-beheizt durch Abgas (20°C > Taupunkt)

Entnahmeleitung: PTFE, beheizt auf 180°C

Länge der Entnahmeleitung in m: 15

Ab-/Adsorptionseinrichtung: Waschflaschen mit Fritte (2fach), gekühlt Sorptionsmittel und Menge: DNPH-Lösung in Acetonitril, je ca. 20 ml

6

Abstand Ansaugöffnung der Entnahme-

sonde / Abscheideelement in m: 15
Verdünnung bei der Probenahme: nein

Absaugeinrichtung: Gasförderpumpe mit Gaszähler

Zeitraum zwischen Probenahme und Ana-

lyse in Tagen:

4.3.1.3 Analytische Bestimmung

Analyseverfahren: HPLC mit UV-Detektor

Standort Analysenlabor: Köln

Luftreinhaltung

Bericht über die Durchführung von Emissionsmessungen an der Tafellackierung 4 (TLA 4) bei der thyssenkrupp Rasselstein GmbH für die Messkomponenten CO, NOx, Gesamt-C, Formaldehyd, Methylisobutylketon und O_2 , Berichts-Nr.:EuL/21271135/B

Seite 23 von 50

4.4 Messverfahren für partikelförmige Emissionen

4.4.1 Messkomponente: Gesamtstaub

4.4.1.1 Messverfahren: Ermittlung der Staubmasse bei geringen

Staubgehalten;

manuelles gravimetrisches Verfahren DIN EN 13284, Teil 1, Februar 2018

4.4.1.2 Probenahme und Probenaufbereitung

Rückhaltesystem für partikelförmige Stoffe

Filtergerät: Planfilterkopfgerät

Anordnung: Instack mit Krümmer zwischen Entnahme-

sonde und Filtergehäuse

Filtrationstemperatur in °C: Abgastemperatur

Wirkdurchmesser Entnahmesonde: siehe Tabelle, Anhang 2

Material Entnahmesonde: Titan

Material Absaugrohr: Edelstahl
Material Filter: Quarzfaser

Filterdurchmesser: 50 mm

Absorptionssysteme für filtergängige Stoffe: nicht zutreffend

Absaugeinrichtung: Drehschieberpumpe, mind. 6 m³/h

mit Gaszähler G4

4.4.1.3 Behandlung der Filter und der Ablagerungen

Rückgewinnung von Ablagerungen

vor dem Filter: nach jeder Messreihe

(mindestens einmal pro Tag)

Trocknungstemperatur / -zeit

vor der Beaufschlagung: 300 °C / mind. 1 h nach der Beaufschlagung: 160 °C / mind. 1 h Konditionierung im Wägeraum (vor / nach): 24 h / 24 h (Exsikkator)

Waage / Hersteller: Standort Analysenla-

bor: XPE 205 / Mettler Toledo

Köln

4.4.1.4 Aufbereitung und Analyse der

Filter und Absorptionslösungen: nicht zutreffend

Die Angaben zur Einhaltung der isokinetischen Bedingungen finden sich in Anhang 2.

4.5 Besondere hochtoxische Abgasinhaltsstoffe: nicht zutreffend

4.6 Geruchsemissionen: nicht zutreffend

6.000

Seite 24 von 50

Bericht über die Durchführung von Emissionsmessungen an der Tafellackierung 4 (TLA 4) bei der thyssenkrupp Rasselstein GmbH für die Messkomponenten CO, NOx, Gesamt-C, Formaldehyd, Methylisobutylketon und O₂, Berichts-Nr.:EuL/21271135/B

5 Betriebszustand der Anlage während der Messungen

5.1 Produktionsanlage

Einsatzstoffe/Brennstoffe: Stahlbleche

Lack Erdgas

Produkte: Lackierte Stahlbleche
Betriebsweise: kontinuierlicher Betrieb

Durchsatz/Leistung:

Durchsatz in Tafeln/h:

Datum: 25.06.2025 und 01.07.2025

26.06.2025

6.015

Tafelgröße in mm: 886 x 917 954 x 730

Lackauflage in g/m² (trocken):6,016,7Lack-Nr.:303937

weitere charakteristische Temperatur Betriebsgrößen: Zone

Zone 1.1 190 °C 183°C

Zone 1.2 201 °C 201°C

Zone 2 205 °C 199°C

DVH 63 °C 59

TNV 740 °C 740 °C

5.2 Abgasreinigungsanlage

Letzte Wartung: siehe unter 2.6.2

Emissionsbeeinflussende

Parameter: TNV Temperatur, Lösemittelanteil und

-durchsatz

Besonderheiten der Ab-

gasreinigung:

keine

keine

Abweichungen von genehmigter oder bestimmungs-

gemäßer Betriebsweise: keine

Besondere Vorkommnisse:

Luftreinhaltung

Bericht über die Durchführung von Emissionsmessungen an der Tafellackierung 4 (TLA 4) bei der thyssenkrupp Rasselstein GmbH für die Messkomponenten CO, NOx, Gesamt-C, Formaldehyd, Methylisobutylketon und O_2 , Berichts-Nr.:EuL/21271135/B

Seite 25 von 50

Example 2 Zusammenstellung der Messergebnisse und Diskussion

6.1 Bewertung der Betriebsbedingungen während der Messungen

Die Betriebsbedingungen während der Messungen entsprachen dem Zustand der höchsten Emissionen.

Während der Messungen wurde die Anlage im bestimmungsgemäßen Betrieb mit typischen Produkt betrieben.

6.2 Messergebnisse

Seite 26 von 50

Bericht über die Durchführung von Emissionsmessungen an der Tafellackierung 4 (TLA 4) bei der thyssenkrupp Rasselstein GmbH für die Messkomponenten CO, NOx, Gesamt-C, Formaldehyd, Methylisobutylketon und O₂, Berichts-Nr.:EuL/21271135/B

TNV Quelle 163

TNV Quelle 163		T		
Brennstoff			Erdgas H	
Datum	2025	25.06.	25.06.	25.06.
Messzeitraum	von	11:10	13:26	16:22
Aktive reale Messdauer: 30 Minuten	bis	11:40	13:56	16:52
Betriebszustand	Last		Volllast ¹)	
Einstellung	Stufe	100 %		
Durchsatz	m³/h	95	95	95
Feuerungswärmeleistung	MW	1,0	1,0	1,0
Luftdruck	hPa	1007	1007	1007
Abgastemperatur	°C	334,5	336,5	336,0
O ₂ -Konzentration, trocken	Vol%	17,64	17,59	17,56
CO ₂ -Konzentration, trocken	Vol%	2,2	2,2	2,2
Abgasfeuchte (f)	m³/m³	0,037	0,037	0,037
Abgasvolumenstrom (n,tr)	m³/h	1.590	1.590	1.590
Brennstoff			Erdgas H	
Datum	2025	25.06.	25.06.	25.06.
Messzeitraum	von	11:10	13:26	16:22

Brennstoff				Erdgas H	
Datum		2025	25.06.	25.06.	25.06.
Messzeitraum		von	11:10	13:26	16:22
Aktive reale Messdauer: 30 Minuten		bis	11:40	13:56	16:52
Betriebszustand		Last		Volllast ¹)	•
Einstellung		Stufe		100 %	
NO _X -Konzentration als NO	(n,tr)	g/m³	0,031	0,031	0,030
NO _X -Konzentration als NO ₂	(n,tr)	g/m³	0,048	0,047	0,047
Erw. Messunsicherheit U _{0,95}		g/m³	0,001	0,002	0,001
NO _X -Grenzwert		g/m³		0,10	
NO _x -Massenstrom		kg/h	0,078	0,076	0,075
CO-Konzentration	(n,tr)	g/m³	0,060	0,055	0,059
Erw. Messunsicherheit U _{0,95}		g/m³	0,002	0,002	0,002
CO-Grenzwert		g/m³	0,10		
CO-Massenstrom		kg/h	0,096	0,088	0,094
Gesamt-C-Konzentration	(n,tr)	mg/m³	0,8	< 0,5	< 0,5
Erw. Messunsicherheit U _{0,95}		mg/m³	0,07	0,04	0,04
Gesamt-C-Grenzwert		mg/m³	20		
Gesamt-C-Massenstrom		kg/h	0,001	<0,0008	<0,0008
Staub-Konzentration	(n,tr)	mg/m³	<0,3	<0,3	<0,3
Erw. Messunsicherheit U _{0,95}		mg/m³	0,07	0,06	0,07
Staub-Grenzwert		mg/m³		3	
Staub-Massenstrom		kg/h	<0,0005	<0,0005	0,0005
Formaldehyd-Konzentration	(n,tr)	mg/m³	<0,2	<0,2	<0,2
Erw. Messunsicherheit U _{0,95}		mg/m³	0,05	0,05	0,06
HCHO-Grenzwert		mg/m³	2		
HCHO-Massenstrom		kg/h	<0,0004	<0,0004	<0,0004
Methylisobutylketon-Konzentration	(n,tr)	mg/m³	<0,2	<0,2	<0,2
Erw. Messunsicherheit U _{0,95}		mg/m³	1	2	3
Methylisobutylketon-Grenzwert		mg/m³		20	
Methylisobutylketon-Massenstrom		0	<0,0004	<0,0004	<0,0004

n,tr // n,f w asserdampffreies // feuchtes Abgas, bezogen auf 273 K und 101,3 kPa

n,tr,O₂ // n,f,O₂ n,tr // n,f bezogen auf den O₂-Bezugswert vorgefundene maximale Anlagenleistung

Luftreinhaltung

Bericht über die Durchführung von Emissionsmessungen an der Tafellackierung 4 (TLA 4) bei der thyssenkrupp Rasselstein GmbH für die Messkomponenten CO, NOx, Gesamt-C, Formaldehyd, Methylisobutylketon und O_2 , Berichts-Nr.:EuL/21271135/B

Seite 27 von 50

Drahtvorwärmung Quelle 164

Einsatzstoff			Abluft	
Datum	2025	26.06.	26.06.	26.06.
Messzeitraum	von	10:04	11:10	11:50
Aktive reale Messdauer: 30 Minuten	bis	10:34	11:40	12:20
Betriebszustand	Last		Volllast 1)	ı
Einstellung	Stufe		100 %	
Luftdruck	hPa	1005	1005	1005
Abgastemperatur	°C	75,9	67,2	76,9
O ₂ -Konzentration, trocken	Vol%	20,67	20,77	20,76
CO ₂ -Konzentration, trocken	Vol%	< 0,1	< 0,1	< 0,1
Abgasfeuchte (f)	m³/m³	0,015	0,015	0,015
Abgasvolumenstrom (n,tr)	m³/h	1.440	1.440	1.440
Einsatzstoff			Abluft	
Datum	2025	26.06.	26.06.	26.06.
Messzeitraum	von	10:04	11:10	11:50
Aktive reale Messdauer: 30 Minuten	bis	10:34	11:40	12:20
Betriebszustand	Last Stufe		Volllast ¹)	
Einstellung (p.tr.)	g/m³	0,001	0,001	0,001
NO _x -Konzentration als NO (n,tr)				
NO _X -Konzentration als NO ₂ (n,tr)		0,002	0,002	0,001
Erw. Messunsicherheit U _{0,95}	g/m³	0,001	0,001	0,001
NO _X -Grenzwert NO _X -Massenstrom	g/m³ kg/h	0,004	0,10	0,003
CO-Konzentration (n,tr)		0,005	0,002	0,003
Erw. Messunsicherheit U _{0,95}	g/m³	0,0001	0,00006	0,0001
CO-Grenzwert	g/m³		0,10	
CO-Massenstrom	kg/h	0,007	0,0031	0,0047
Gesamt-C-Konzentration (n,tr)	mg/m³	2,1	1,5	2,1
Erw. Messunsicherheit U _{0,95}	mg/m³	0,1	0,1	0,1
Gesamt-C-Grenzwert	mg/m³		20	
Gesamt-C-Massenstrom	kg/h	0,003	0,002	0,003
Staub-Konzentration (n,tr)	mg/m³	0,5	0,4	0,4
Erw. Messunsicherheit U _{0,95}	mg/m³	0,04	0,04	0,04
Staub-Grenzwert	mg/m³		3	
Staub-Massenstrom	kg/h	0,0008	0,0007	0,0007
Formaldehyd-Konzentration (n,tr)	mg/m³	0,3	0,2	0,2
Erw. Messunsicherheit U _{0,95}	mg/m³	0,06	0,06	0,06
HCHO-Grenzwert	mg/m³		2	Г
HCHO-Massenstrom	kg/h	0,0005	0,0004	0,0004
Methylisobutylketon-Konzentration (n,tr)	mg/m³	<0,2	<0,2	<0,2
Erw. Messunsicherheit U _{0,95}	mg/m³	0,06	0,06	0,06
HCHO-Grenzwert	mg/m³		20	T
HCHO-Massenstrom	0	<0,0004	<0,0004	<0,0004

n,tr // n,f w asserdampffreies // feuchtes Abgas, bezogen auf 273 K und 101,3 kPa vorgefundene maximale Anlagenleistung

Seite 28 von 50

Bericht über die Durchführung von Emissionsmessungen an der Tafellackierung 4 (TLA 4) bei der thyssenkrupp Rasselstein GmbH für die Messkomponenten CO, NOx, Gesamt-C, Formaldehyd, Methylisobutylketon und O₂, Berichts-Nr.:EuL/21271135/B

Kühlzone 1 Quelle 165

Einsatzstoff			Abluft	
Datum	2025	01.07.	01.07.	01.07.
Messzeitraum	von	13:05	13:37	14:09
Aktive reale Messdauer: 30 Minuten	bis	13:35	14:07	14:39
Betriebszustand	Last	Volllast 1)		
Einstellung	Stufe	100 %		
Luftdruck	hPa	1009	1009	1009
Abgastemperatur	°C	48,8	48,8	49,0
O ₂ -Konzentration, trocken	Vol%	20,94	20,94	20,94
CO ₂ -Konzentration, trocken ²⁾	Vol%	< 0,1	< 0,1	< 0,1
Abgasfeuchte (f)	m³/m³	0,090	0,090	0,090
Abgasvolumenstrom (n,tr)	m³/h	18.000	18.000	18.000

über Brennstoffeinsatz berechnet

Finsatzstoff				Abluft	
Datum		2025	01.07.	01.07.	01.07.
Messzeitraum		von	13:05	13:37	14:09
Aktive reale Messdauer: 30 Minuten		bis	13:35	14:07	14:39
Betriebszustand		Last		Volllast 1)	
Einstellung		Stufe		100 %	
Gesamt-C-Konzentration	(n,tr)	mg/m³	3,6	3,4	3,3
Erw. Messunsicherheit U _{0,95}		mg/m³	0,1	0,1	0,1
Gesamt-C-Grenzwert		mg/m³		20	
Gesamt-C-Massenstrom		kg/h	0,065	0,063	0,061
Staub-Konzentration	(n,tr)	mg/m³	<0,3	<0,3	<0,3
Erw. Messunsicherheit U _{0,95}		mg/m³	0,02	0,02	0,02
Staub-Grenzwert		mg/m³	3		-
Staub-Massenstrom		kg/h	<0,006	<0,006	<0,006
Formaldehyd-Konzentration	(n,tr)	mg/m³	<0,3	<0,2	<0,2
Erw. Messunsicherheit U _{0,95}		mg/m³	0,07	0,05	0,06
HCHO-Grenzwert		mg/m³		2	
HCHO-Massenstrom		kg/h	<0,006	<0,005	<0,005
Methylisobutylketon-Konzentration	(n,tr)	mg/m³	<0,3	<0,2	<0,2
Erw. Messunsicherheit U _{0,95}		mg/m³	0,07	0,05	0,06
Methylisobutylketon-Grenzwert		mg/m³		20	
Methylisobutylketon-Massenstrom		kg/h	<0,006	<0,005	<0,005

n,tr // n,f w asserdampffreies // feuchtes Abgas, bezogen auf 273 K und 101,3 kPa n,tr, O_2 // n,f, O_2 n,tr // n,f bezogen auf den O_2 -Bezugsw ert

1) vorgefundene maximale Anlagenleistung

Luftreinhaltung

Bericht über die Durchführung von Emissionsmessungen an der Tafellackierung 4 (TLA 4) bei der thyssenkrupp Rasselstein GmbH für die Messkomponenten CO, NOx, Gesamt-C, Formaldehyd, Methylisobutylketon und O_2 , Berichts-Nr.:EuL/21271135/B

Seite 29 von 50

Kühlzone 2 Quelle 166

Einsatzstoff	Abluft			
Datum	2025	01.07.	01.07.	01.07.
Messzeitraum	von	10:47	11:20	11:55
Aktive reale Messdauer: 30 Minuten	bis	11:17	11:50	12:25
Betriebszustand	Last	Volllast 1)		
Einstellung	Stufe	100 %		
Luftdruck	hPa	1009	1009	1009
Abgastemperatur	°C	48,0	39,5	38,6
O ₂ -Konzentration, trocken	Vol%	20,94	20,94	20,94
CO ₂ -Konzentration, trocken ²⁾	Vol%	< 0,1	< 0,1	< 0,1
Abgasfeuchte (f)	m³/m³	0,090	0,090	0,090
Abgasvolumenstrom (n,tr)	m³/h	17.500	17.500	17.500

über Brennstoffeinsatz berechnet

Einsatzstoff				Abluft	
Datum		2025	01.07.	01.07.	01.07.
Messzeitraum		von	10:47	11:20	11:55
Aktive reale Messdauer: 30 Minuten		bis	11:17	11:50	12:25
Betriebszustand		Last		Volllast 1)	
Einstellung		Stufe		100 %	
Gesamt-C-Konzentration	(n,tr)	mg/m³	2,0	3,7	1,7
Erw. Messunsicherheit U _{0,95}		mg/m³	0,09	0,1	0,07
Gesamt-C-Grenzwert		mg/m³	20		
Gesamt-C-Massenstrom		kg/h	0,037	0,066	0,030
Staub-Konzentration	(n,tr)	mg/m³	0,4	0,4	0,4
Erw. Messunsicherheit U _{0,95}		mg/m³	0,04	0,04	0,04
Staub-Grenzwert		mg/m³	3		
Staub-Massenstrom		kg/h	0,008	0,008	0,008
Formaldehyd-Konzentration	(n,tr)	mg/m³	<0,2	<0,2	<0,3
Erw. Messunsicherheit U _{0,95}		mg/m³	0,06	0,06	0,07
HCHO-Grenzwert		mg/m³		2	
HCHO-Massenstrom		kg/h	<0,005	<0,005	<0,005
Methylisobutylketon-Konzentration	(n,tr)	mg/m³	<0,2	<0,2	<0,3
Erw. Messunsicherheit U _{0,95}		mg/m³	0,06	0,06	0,06
Methylisobutylketon-Grenzwert		mg/m³	20		
Methylisobutylketon-Massenstrom		kg/h	<0,005	<0,005	<0,005

n,tr // n,f $\,$ w asserdampffreies // feuchtes Abgas, bezogen auf 273 K und 101,3 kPa n,tr,O $_2$ // n,f,O $_2$ $\,$ n,tr // n,f bezogen auf den O $_2$ -Bezugswert

Die Einzelergebnisse und Messprotokolle befinden sich im Anhang.

6.3 Messunsicherheiten

Die Tabelle zur Beurteilung der Messergebnisse, in der maximaler Messwert und erweiterte Messunsicherheit angegeben sind, befindet sich in der Zusammenfassung ab Seite 5.

¹⁾ vorgefundene maximale Anlagenleistung

TÜV Rheinland Energy & Environment GmbH Luftreinhaltung

Seite 30 von 50

Bericht über die Durchführung von Emissionsmessungen an der Tafellackierung 4 (TLA 4) bei der thyssenkrupp Rasselstein GmbH für die Messkomponenten CO, NOx, Gesamt-C, Formaldehyd, Methylisobutylketon und O₂, Berichts-Nr.:EuL/21271135/B

Die Messunsicherheiten werden bei allen Komponenten rechnerisch ermittelt. Hierbei werden die Vorgaben der komponentenspezifischen Normen berücksichtigt.

6.4 Diskussion der Ergebnisse

Die Anlagenauslastung ist anhand des Durchsatzes von 6.015 bzw. 6.000 Tafeln/h nachvollziehbar.

Unter Berücksichtigung der Messgenauigkeit der angewandten Messverfahren und der vorgefundenen Betriebsweise der Anlage sind die Ergebnisse plausibel. Die ermittelten Werte sind repräsentativ für die Emissionsquelle.

Die Messergebnisse entsprechen den Ergebnissen der Vormessungen sowie den Ergebnissen an vergleichbaren Anlagen.

Die Messergebnisse korrelieren mit den angegebenen Betriebszuständen.

Die Prüfergebnisse beziehen sich auf die untersuchte Anlage im beschriebenen Zustand.

Abteilung Immissionsschutz / Luftreinhaltung (EuL)

Bearbeiter Stellvertreter der fachlich Verantwortlichen

7 Übersicht über den Anhang

A1: Abgasrandbedingungen

A2: Auswertung der Schadstoffmessungen

A3: Grafische Darstellung des zeitlichen Verlaufs kontinuierlich gemessener Komponenten

A4: Abkürzungen

Luftreinhaltung

TÜVRheinland®
Genau. Richtig.

Seite 31 von 50

Bericht über die Durchführung von Emissionsmessungen an der Tafellackierung 4 (TLA 4) bei der thyssenkrupp Rasselstein GmbH für die Messkomponenten CO, NOx, Gesamt-C, Formaldehyd, Methylisobutylketon und O_2 , Berichts-Nr.:EuL/21271135/B

Anhang A1: Abgasrandbedingungen

					
Berechnung des Hauptvolumenstron	Berechnung des Hauptvolumenstroms im Kanal:				
Firma	Rasselstei	n			
Anlage	TLA 4 TNV				
Messstelle	Kamin				
Messtag		25.06.2025			
Messung	Nr.	1			
Betriebszustand der Anlage		Volllast			
Messbeginn	Uhr	11:00			
Messdauer	min	4			
Mittlere Abgastemperatur	°C	335			
desgleichen absolut	K	608			
Luftdruck	hPa	1007			
statische Druckdifferenz	∆ hPa	0,5			
absoluter Druck	hPa	1008			
Sauerstoffkonzentration	Vol%	17,6			
Kohlendioxidkonzentration	Vol%	2,2			
Abgasfeuchte (f _f) *	m³/m³	0,037			
Wassergehalt bez. auf trockenes Abgas	g/m³	-			
Dichte (n,f)	kg/m³	1,285			
Dichte Kanalzustand (t,p,f)	kg/m³	0,574			
Mittlerer Wurzelw ert d. dyn. Druck	√Pa	8,15			
mittlere Gasgeschw indigkeit	m/s	8,15			
Kanalquerschnitt	m²	0,126			
Faktor Volumenstrommessung		0,84			
Hauptvolumenstrom (t,p,f)	m³/s	1,02			
desgleichen stündlich (t,p,f)	m³/h	3.690			
desgleichen (n,f)	m³/h	1.650			
desgleichen (n,tr)	m³/h	1.590			

 $^{^{\}star}$ adsorptive Feuchtemessung entspr. Auffang-Wirkungsgrad korrigiert t,p,f = Betriebszustand

Verteilung der Geschwindigkeiten im Messnetz

Messung Nr.	1
Last	Volllast
Punkt	m/s
1	8,1
2	8,1
3	8,1
4	8,1

n,f = bezogen auf Normzustand (273 K, 1013 hPa) feuchtes Abgas n,tr = bezogen auf Normzustand (273 K, 1013 hPa) trockenes Abgas

Seite 32 von 50

Bericht über die Durchführung von Emissionsmessungen an der Tafellackierung 4 (TLA 4) bei der thyssenkrupp Rasselstein GmbH für die Messkomponenten CO, NOx, Gesamt-C, Formaldehyd, Methylisobutylketon und O₂, Berichts-Nr.:EuL/21271135/B

Berechnung des Hauptvolumenstroms im Kanal:				
Firma	Rasselstein			
Anlage	Drahtrahmenvorw ärmung			
Messstelle	Kamin			
Messtag		26.06.2025		
Messung	Nr.	1		
Betriebszustand der Anlage		Volllast		
Messbeginn	Uhr	9:50		
Messdauer	min	4		
Mittlere Abgastemperatur	°C	75		
desgleichen absolut	K	348		
Luftdruck	hPa	1005		
statische Druckdifferenz	∆ hPa	-0,17		
absoluter Druck	hPa	1005		
Sauerstoffkonzentration	Vol%	20,7		
Kohlendioxidkonzentration	Vol%	0,0		
Abgasfeuchte (f _f) *	m³/m³	0,015		
Wassergehalt bez. auf trockenes Abgas	g/m³	-		
Dichte (n,f)	kg/m³	1,286		
Dichte Kanalzustand (t,p,f)	kg/m³	1,000		
Mittlerer Wurzelw ert d. dyn. Druck	√Pa	3,50		
mittlere Gasgeschw indigkeit	m/s	4,16		
Kanalquerschnitt	m²	0,126		
Faktor Volumenstrommessung		0,84		
Hauptvolumenstrom (t,p,f)	m³/s	0,52		
desgleichen stündlich (t,p,f)	m³/h	1.880		
desgleichen (n,f)	m³/h	1.470		
desgleichen (n,tr)	m³/h	1.440		

^{*} adsorptive Feuchtemessung entspr. Auffang-Wirkungsgrad korrigiert t,p,f = Betriebszustand

n,f = bezogen auf Normzustand (273 K, 1013 hPa) feuchtes Abgas n,tr = bezogen auf Normzustand (273 K, 1013 hPa) trockenes Abgas

Messung Nr.	1		
Last	Volllast		
Punkt	m/s		
1	3,4		
2	20		

4,4

Luftreinhaltung

TÜVRheinland®
Genau. Richtig.

Bericht über die Durchführung von Emissionsmessungen an der Tafellackierung 4 (TLA 4) bei der thyssenkrupp Rasselstein GmbH für die Messkomponenten CO, NOx, Gesamt-C, Formaldehyd, Methylisobutylketon und O_2 , Berichts-Nr.:EuL/21271135/B

Berechnung des Hauptvolumenstroms im Kanal:				
Firma	Rasselstein			
Anlage	Kühlzone 1 TLA4			
Messstelle	Kamin			
Messtag	01.07.2025			
Messung	Nr.	1		
Betriebszustand der Anlage		Volllast		
Messbeginn	Uhr	13:00		
Messdauer	min	8		
Mittlere Abgastemperatur	°C	49		
desgleichen absolut	K	322		
Luftdruck	hPa	1009		
statische Druckdifferenz	∆ hPa	0,09		
absoluter Druck	hPa	1009		
Sauerstoffkonzentration	Vol%	20,9		
Kohlendioxidkonzentration	Vol%	0,0		
Abgasfeuchte (f _f) *	m³/m³	0,090		
Wassergehalt bez. auf trockenes Abgas	g/m³	-		
Dichte (n,f)	kg/m³	1,249		
Dichte Kanalzustand (t,p,f)	kg/m³	1,056		
Mittlerer Wurzelw ert d. dyn. Druck	√Pa	8,85		
mittlere Gasgeschw indigkeit	m/s	10,23		
Kanalquerschnitt	m²	0,636		
Faktor Volumenstrommessung		0,84		
Hauptvolumenstrom (t,p,f)	m³/s	6,51		
desgleichen stündlich (t,p,f)	m³/h	23.400		
desgleichen (n,f)	m³/h	19.800		
desgleichen (n,tr)	m³/h	18.000		

 $^{^{\}star}$ adsorptive Feuchtemessung entspr. Auffang-Wirkungsgrad korrigiert t,p,f = Betriebszustand

n,tr = bezogen auf Normzustand (273 K, 1013 hPa) trockenes Abgas

Messung Nr.	1				
Last	Volllast				
Punkt	m/s				
1	10,5				
2	10,1				
3	8,7				
4	9,2				
5	11,7				
6	11,0				
7	10,8				
8	9,7				

Seite 33 von 50

n,f = bezogen auf Normzustand (273 K, 1013 hPa) feuchtes Abgas

Seite 34 von 50

Bericht über die Durchführung von Emissionsmessungen an der Tafellackierung 4 (TLA 4) bei der thyssenkrupp Rasselstein GmbH für die Messkomponenten CO, NOx, Gesamt-C, Formaldehyd, Methylisobutylketon und O₂, Berichts-Nr.:EuL/21271135/B

Berechnung des Hauptvolumenstroms im Kanal:					
Firma	Rasselstei	Rasselstein			
Anlage	Kühlzone 2	Kühlzone 2 TLA4			
Messstelle	Kamin				
Messtag		01.07.2025			
Messung	Nr.	1			
Betriebszustand der Anlage		Volllast			
Messbeginn	Uhr	10:30			
Messdauer	min	8			
Mittlere Abgastemperatur	°C	48			
desgleichen absolut	K	321			
Luftdruck	hPa	1009			
statische Druckdifferenz	∆ hPa	0,09			
absoluter Druck	hPa	1009			
Sauerstoffkonzentration	Vol%	20,9			
Kohlendioxidkonzentration	Vol%	0,0			
Abgasfeuchte (f _f) *	m³/m³	0,090			
Wassergehalt bez. auf trockenes Abgas	g/m³	-			
Dichte (n,f)	kg/m³	1,249			
Dichte Kanalzustand (t,p,f)	kg/m³	1,058			
Mittlerer Wurzelw ert d. dyn. Druck	√Pa	8,58			
mittlere Gasgeschw indigkeit	m/s	9,91			
Kanalquerschnitt	m²	0,636			
Faktor Volumenstrommessung		0,84			
Hauptvolumenstrom (t,p,f)	m³/s	6,31			
desgleichen stündlich (t,p,f)	m³/h	22.700			
desgleichen (n,f)	m³/h	19.200			
desgleichen (n,tr)	m³/h	17.500			

^{*} adsorptive Feuchtemessung entspr. Auffang-Wirkungsgrad korrigiert t,p,f = Betriebszustand

n,f = bezogen auf Normzustand (273 K, 1013 hPa) feuchtes Abgas n,tr = bezogen auf Normzustand (273 K, 1013 hPa) trockenes Abgas

Messung Nr.	1
Last	Volllast
Punkt	m/s
1	10,6
2	9,7
3	8,9
4	9,1
5	9,9
6	9,3
7	10,5
8	11,3

Luftreinhaltung

Bericht über die Durchführung von Emissionsmessungen an der Tafellackierung 4 (TLA 4) bei der thyssenkrupp Rasselstein GmbH für die Messkomponenten CO, NOx, Gesamt-C, Formaldehyd, Methylisobutylketon und O_2 , Berichts-Nr.:EuL/21271135/B

Seite 35 von 50

Anhang A2: Auswertung der Schadstoffmessungen

Tabelle Anhang: Auswertung der Staubemissionsmessungen					
Firma Rasselstein					
Anlage		TLA 4 TNV			
Messstelle	Kamin				
Messtag		25.06.2025	25.06.2025	25.06.2025	
Messung	Nr.	1	2	3	
Volumenstrom-Messung	Nr.	1	1	1	
Lastzustand		Volllast	Volllast	Volllast	
Messbeginn	Uhr	11:10	13:26	16:22	
Messende	Uhr	11:40	13:56	16:52	
HAUPTVOLUMENSTROM			-		
Temperatur (im Mittel)	°C	335	335	335	
desgleichen absolut	К	608	608	608	
Barometerstand	hPa	1007	1007	1007	
statische Druckdifferenz	hPa	1	1	1	
absoluter Druck im Kanal	hPa	1008	1008	1008	
Sauerstoffkonzentration	Vol%	17,6	17,6	17,6	
Kohlendioxidkonzentration	Vol%	2,2	2,2	2,2	
Feuchte (n,f)	m³/m³	0,037	0,037	0,037	
Wassergehalt bez. auf trockenes Abgas	g/m³	-	-	-	
Dichte (n,f)	kg/m³	1,285	1,285	1,285	
Dichte (t,p,f)	kg/m³	0,574	0,574	0,574	
Mittlerer Wurzelwert d. dyn. Drucks	√Pa	8,15	8,15	8,15	
Mittlere Gasgeschwindigkeit	m/s	8,15	8,1	8,1	
Kanalquerschnitt	m²	0,13	0,13	0,13	
Hauptvolumenstrom (t,p,f)	m³/s	1,02	1,02	1,02	
desgleichen stündlich (t,p,f)	m³/h	3.690	3.690	3.690	
bz. auf Normzustand fe.(n,f)	m³/h	1.650	1.650	1.650	
bz. auf Normzustand tr.(n,tr)	m³/h	1.590	1.590	1.590	
ABGESAUGTES TEILGASVOLUMEN					
Aktive reale Messdauer	h:mm	00:30	00:30	00:30	
Temperatur an der Gasuhr	°C	38	38	39	
statischer Druck an der Gasuhr	hPa	0	0	0	
Sondendurchmesser	mm	14	14	14	
Teilgas volumen (t,p,tr)	m³	1,09	1,12	1,113	
Korrekturfaktor der Gasuhr		0,996	0,996	0,996	
bz. auf Normzustand tr.(n,tr)	m³	0,947	0,973	0,964	
Isokinetisches Verhältnis	%	98	100	99	
MASSENKONZENTRATION- UND STROM					
Staubmasse, Filter	mg	< 0,3	< 0,3	< 0,3	
Staubmasse vor Filter *)	mg	- *)	- *)	- *)	
Staubmasse, gesamt	mg	< 0,30	< 0,3	< 0,3	
Gesamtleerprobe, Feldblindwert	mg	< 0,30	< 0,30	< 0,30	
bezogen auf das Teilgas volumen (n,tr)	mg/m³	< 0,32	< 0,31	< 0,31	
Blindwert in Relation zum Grenzwert	%	< 10,7	< 10,3	< 10,3	
Blindwert in Relation zum Messwert	%	< 100	< 100	< 100	
Sauerstoffgehalt im Abgas	Vol%	17,64	17,59	17,56	
Massenstrom	kg/h	< 0,0005	< 0,0005	< 0,0005	
Staubkonzentration (n,f)	mg/m³	< 0,30	< 0,30	< 0,30	
Staubkonzentration (n,tr)	mg/m³	< 0,32	< 0,31	< 0,31	

Die Tabelle enthält gerundete Werte, somit können sich Abw eichungen zur Darstellung in Kapitel 6 ergeben.

t,p,f = Betriebszustand

t,p,tr = Gasuhrzustand nach Abgastrocknung

n,tr // n,f = bezogen auf Normzustand (273 K, 1013 hPa), trockenes Abgas // feuchtes Abgas

Seite 36 von 50

Bericht über die Durchführung von Emissionsmessungen an der Tafellackierung 4 (TLA 4) bei der thyssenkrupp Rasselstein GmbH für die Messkomponenten CO, NOx, Gesamt-C, Formaldehyd, Methylisobutylketon und O₂, Berichts-Nr.:EuL/21271135/B

Tabelle Anhang: Bestimmung der Emissionen an Formaldehyd

Firma	Rasselstein							
Anlage	TLA4 TNV							
Messstag			25.06.2025		25.06.2025		25.06.2025	
Messung Nr.			1		2		3	
Betriebszustand			Volllast		Volllast		Volllast	
Messbeginn	Uhr		11:10		13:26		16:22	
Messende	Uhr		11:40		13:56		16:52	
Abgesaugtes Teilgasvolumen								
Aktive reale Messdauer	h:mm		00:30		00:30		00:30	
Stand der Gasuhr am Ende	m³		0,0183		0,0194		0,0174	
Stand der Gasuhr am Anfang	m³		0,0000		0,0000		0,0000	
Abges. Teilgasvolumen (t,p,tr)	m³		0,0183		0,0194		0,0174	
Korrekturfaktor der Gasuhr			0,993		0,993		0,993	
Mittl. Temperatur an der Gasuhr	°C		30		33		35	
Desgl. in abs. Temperaturgraden	K		303	306		308		
Barometerstand	hPa		1007	1007		1007		
Stat. Druckdifferenz an der Gasuhr	hPa		0		0		0	
Korr. Druck an der Gasuhr	hPa		1007	1007		1007		
Abges. Teilgasvolumen (n,tr)	m³		0,0163		0,0171		0,0152	
Massenkonzentration und -strom								
gefundene Masse Formaldehyd in der Probe	μg	<	4	<	4	<	4	
davon im abschließenden Ab-/Adsorber, B-Probe	μg	<	4	<	4	<	4	
Absorptionsgrad, A-Probe	%		< BG = OK		< BG = OK		< BG = OK	
Masse, Feldblindwert	μg	<	4	<	4	<	4	
bezogen auf das Teilgas volumen (n,tr)	mg/m³	<	0,2	<	0,2	<	0,3	
Blindwert in Relation zum Grenzwert	%	<	12,3	<	11,7	<	13,1	
Blindwert in Relation zum Messwert	%	<	100,0	<	100,0	<	100,0	
Massenkonzentration (n,tr)	mg/m³	<	0,25	<	0,23	<	0,26	
Hauptvolumenstrom (n,tr)	m³/h		1.590		1.590		1.590	
Massenstrom	kg/h	<	0,0004	<	0,0004	<	0,0004	
Feuchte im Abgas	m³/m³		0,037		0,037		0,037	
Sauerstoffgehalt im Abgas	Vol%		17,64		17,59		17,56	

Die Tabelle enthält gerundete Werte, somit können sich Abw eichungen zur Darstellung in Kapitel 6 ergeben.

t,p,tr = bezogen auf Betriebszustand ohne Feuchteanteil

n,tr // n,f = bezogen auf Normzustand (273 K, 1013 hPa), trockenes Abgas // feuchtes Abgas

Luftreinhaltung

Bericht über die Durchführung von Emissionsmessungen an der Tafellackierung 4 (TLA 4) bei der thyssenkrupp Rasselstein GmbH für die Messkomponenten CO, NOx, Gesamt-C, Formaldehyd, Methylisobutylketon und O_2 , Berichts-Nr.:EuL/21271135/B

Seite 37 von 50

Tabelle Anhang: Bestimmung der Emissionen an Methylisobutylketon

Firma		Ra	asselstein				
Anlage		TL	A4 TNV				
Messstag			25.06.2025		25.06.2025		25.06.2025
Messung Nr.			1		2		3
Betriebszustand			Volllast		Volllast		Volllast
Messbeginn	Uhr		11:10		13:26		16:22
Messende	Uhr		11:40		13:56		16:52
Abgesaugtes Teilgas volumen							
Aktive reale Messdauer	h:mm		00:30		00:30		00:30
Stand der Gasuhr am Ende	m³		0,0183		0,0194		0,0174
Stand der Gasuhr am Anfang	m³		0,0000		0,0000		0,0000
Abges. Teilgasvolumen (t,p,tr)	m³		0,0183		0,0194		0,0174
Korrekturfaktor der Gasuhr			0,993		0,993		0,993
Mittl. Temperatur an der Gasuhr	°C		30		33		35
Desgl. in abs. Temperaturgraden	K		303	306		308	
Barometerstand	hPa		1007	1007		1007	
Stat. Druckdifferenz an der Gasuhr	hPa		0	0		0	
Korr. Druck an der Gasuhr	hPa		1007	1007		1007	
Abges. Teilgasvolumen (n,tr)	m³		0,0163	0,0171		0,0152	
Massenkonzentration und -strom							
gefundene Masse Formaldehyd in der Probe	μg	<	4	<	4	<	4
davon im abschließenden Ab-/Adsorber, B-Probe	μg	<	4	<	4	<	4
Absorptionsgrad, A-Probe	%		< BG = OK	<	< BG = OK	<	BG = OK
Masse, Feldblindwert	μg	<	4	<	4	<	4
bezogen auf das Teilgas volumen (n,tr)	mg/m³	<	0,2	<	0,2	<	0,3
Blindwert in Relation zum Grenzwert	%	<	1,2	<	1,2	<	1,3
Blindwert in Relation zum Messwert	%	<	100,0	<	100,0	<	100,0
Massenkonzentration (n,tr)	mg/m³	<	0,25	<	0,23	<	0,26
Hauptvolumenstrom (n,tr)	m³/h		1.590		1.590		1.590
Massenstrom	kg/h	<	0,0004	<	0,0004	<	0,0004
Feuchte im Abgas	m³/m³		0,037		0,037		0,037
Sauerstoffgehalt im Abgas	Vol%		17,64		17,59		17,56

Die Tabelle enthält gerundete Werte, somit können sich Abw eichungen zur Darstellung in Kapitel 6 ergeben.

t,p,tr = bezogen auf Betriebszustand ohne Feuchteanteil

Seite 38 von 50

Bericht über die Durchführung von Emissionsmessungen an der Tafellackierung 4 (TLA 4) bei der thyssenkrupp Rasselstein GmbH für die Messkomponenten CO, NOx, Gesamt-C, Formaldehyd, Methylisobutylketon und O₂, Berichts-Nr.:EuL/21271135/B

Tabelle Anhang: Auswertung der Staubemissionsmessungen

Firma		Rasselstein					
Anlage		Drahtrahmenvo	rwärmung				
Messstelle		Kamin					
Messtag		26.06.2025	26.06.2025	26.06.2025			
Messung	Nr.	1	2	3			
Volumenstrom-Messung	Nr.	1	1	1			
Lastzustand		Volllast	Volllast	Volllast			
Messbeginn	Uhr	10:04	11:10	11:50			
Messende	Uhr	10:34	11:40	12:20			
HAUPTVOLUMENSTROM							
Temperatur (im Mittel)	°C	75	75	75			
desgleichen absolut	К	348	348	348			
Barometerstand	hPa	1005	1005	1005			
statische Druckdifferenz	hPa	0	0	0			
absoluter Druck im Kanal	hPa	1005	1005	1005			
Sauerstoffkonzentration	Vol%	20,7	20,7	20,7			
Kohlendioxidkonzentration	Vol%	0,0	0,0	0,0			
Feuchte (n,f)	m³/m³	0,015	0,015	0,015			
Wassergehalt bez. auf trockenes Abgas	g/m³	-	-	-			
Dichte (n,f)	kg/m³	1,286	1,286	1,286			
Dichte (t,p,f)	kg/m³	1,000	1,000	1,000			
Mittlerer Wurzelwert d. dyn. Drucks	√Pa	3,50	3,50	3,50			
Mittlere Gasgeschwindigkeit	m/s	4,16	4,2	4,2			
Kanalquerschnitt	m²	0,13	0,13	0,13			
Hauptvolumenstrom (t,p,f)	m³/s	0,52	0,52	0,52			
desgleichen stündlich (t,p,f)	m³/h	1.880	1.880	1.880			
bz. auf Normzustand fe.(n,f)	m³/h	1.470	1.470	1.470			
bz. auf Normzustand tr.(n,tr)	m³/h	1.440	1.440	1.440			
ABGESAUGTES TEILGASVOLUMEN							
Aktive reale Messdauer	h:mm	00:30	00:30	00:30			
Temperatur an der Gasuhr	°C	36	36	36			
statischer Druck an der Gasuhr	hPa	0	0	0			
Sondendurchmesser	mm	14	14	14			
Teilgasvolumen (t,p,tr)	m³	1,09	1,055	1,06			
Korrekturfaktor der Gasuhr		0,996	0,996	0,996			
bz. auf Normzustand tr.(n,tr)	m³	0,952	0,921	0,925			
Isokinetisches Verhältnis	%	108	104	105			
MASSENKONZENTRATION- UND STROM							
Staubmasse, Filter	mg	0,5	0,4	0,5			
Staubmasse vor Filter *)	mg	- *)	- *)	- *)			
Staubmasse, gesamt	mg	0,51	0,4	0,5			
Gesamtleerprobe, Feldblindwert	mg	< 0,30	< 0,30	< 0,30			
bezogen auf das Teilgas volumen (n,tr)	mg/m³	< 0,32	< 0,33	< 0,32			
Blindwert in Relation zum Grenzwert	%	< 10,7	< 11,0	< 10,7			
Blindwert in Relation zum Messwert	%	< 59	< 68	< 67			
Sauerstoffgehalt im Abgas	Vol%	20,67	20,77	20,76			
Massenstrom	kg/h	0,0008	0,0007	0,0007			
Staubkonzentration (n,f)	mg/m³	0,53	0,47	0,48			
Staubkonzentration (n,tr)	mg/m³	0,54	0,48	0,49			

Die Tabelle enthält gerundete Werte, somit können sich Abw eichungen zur Darstellung in Kapitel 6 ergeben.

t,p,f = Betriebszustand

t,p,tr = Gasuhrzustand nach Abgastrocknung

 $n, tr \ /\!/ \ n, f = bezogen \ auf \ Normzustand \ (273 \ K, \ 1013 \ hPa), \ trockenes \ Abgas \ /\!/ \ feuchtes \ Abgas$

Luftreinhaltung

Bericht über die Durchführung von Emissionsmessungen an der Tafellackierung 4 (TLA 4) bei der thyssenkrupp Rasselstein GmbH für die Messkomponenten CO, NOx, Gesamt-C, Formaldehyd, Methylisobutylketon und O_2 , Berichts-Nr.:EuL/21271135/B

Seite 39 von 50

Tabelle Anhang: Bestimmung der Emissionen an Formaldehyd

Firma		Ra	asselstein				
Anlage		Dr	ahtrahmenvo	orw	ärmung		
Messstag			26.06.2025	26.06.2025			26.06.2025
Messung Nr.			1		2		3
Betriebszustand			Volllast		Volllast		Volllast
Messbeginn	Uhr		10:04		11:10		11:50
Messende	Uhr		10:34		11:40		12:20
Abgesaugtes Teilgasvolumen							
Aktive reale Messdauer	h:mm		00:30		00:30		00:30
Stand der Gasuhr am Ende	m³		0,0163		0,0163		0,0161
Stand der Gasuhr am Anfang	m³		0,0000		0,0000		0,0000
Abges. Teilgasvolumen (t,p,tr)	m³		0,0163		0,0163		0,0161
Korrekturfaktor der Gasuhr			0,993		0,993		0,993
Mittl. Temperatur an der Gasuhr	°C		30		30	29	
Desgl. in abs. Temperaturgraden	K		303	303		302	
Barometerstand	hPa		1005	1005		1005	
Stat. Druckdifferenz an der Gasuhr	hPa		0	0 0		0	
Korr. Druck an der Gasuhr	hPa		1005	1005			1005
Abges. Teilgasvolumen (n,tr)	m³		0,0145	0,0145		0,0143	
Massenkonzentration und -strom							
gefundene Masse Formaldehyd in der Probe	μg		4,9		4,3		4,2
davon im abschließenden Ab-/Adsorber, B-Probe	μg	<	4	<	4	<	4
Absorptionsgrad, A-Probe	%		< BG = OK	<	< BG = OK	<	BG = OK
Masse, Feldblindwert	μg	<	4	<	4	<	4
bezogen auf das Teilgas volumen (n,tr)	mg/m³	<	0,3	<	0,3	<	0,3
Blindwert in Relation zum Grenzwert	%	<	13,8	<	13,8	<	14,0
Blindwert in Relation zum Messwert	%	<	81,6	<	93,0	<	95,2
Massenkonzentration (n,tr)	mg/m³		0,34		0,30		0,29
Hauptvolumenstrom (n,tr)	m³/h		1.440		1.440		1.440
Massenstrom	kg/h		0,0005		0,0004		0,0004
Feuchte im Abgas	m³/m³		0,015		0,015		0,015
Sauerstoffgehalt im Abgas	Vol%		20,67		20,77		20,76

Die Tabelle enthält gerundete Werte, somit können sich Abw eichungen zur Darstellung in Kapitel 6 ergeben.

t,p,tr = bezogen auf Betriebszustand ohne Feuchteanteil

Seite 40 von 50

Bericht über die Durchführung von Emissionsmessungen an der Tafellackierung 4 (TLA 4) bei der thyssenkrupp Rasselstein GmbH für die Messkomponenten CO, NOx, Gesamt-C, Formaldehyd, Methylisobutylketon und O₂, Berichts-Nr.:EuL/21271135/B

Tabelle Anhang: Bestimmung der Emissionen an Methylisobutylketon

Firma	Rasselstein						
Anlage		Dr	ahtrahmenvo	orw	ärmung		
Messstag			26.06.2025		26.06.2025	:	26.06.2025
Messung Nr.			1		2		3
Betriebszustand			Volllast		Volllast		Volllast
Messbeginn	Uhr		10:04		11:10		11:50
Messende	Uhr		10:34		11:40		12:20
Abgesaugtes Teilgasvolumen							
Aktive reale Messdauer	h:mm		00:30		00:30		00:30
Stand der Gasuhr am Ende	m³		0,0163		0,0163		0,0161
Stand der Gasuhr am Anfang	m³		0,0000		0,0000		0,0000
Abges. Teilgasvolumen (t,p,tr)	m³		0,0163		0,0163		0,0161
Korrekturfaktor der Gasuhr			0,993		0,993		0,993
Mittl. Temperatur an der Gasuhr	°C		30		30	29	
Desgl. in abs. Temperaturgraden	K		303	303		302	
Barometerstand	hPa		1005	1005			1005
Stat. Druckdifferenz an der Gasuhr	hPa		0		0		0
Korr. Druck an der Gasuhr	hPa		1005	1005		1005	
Abges. Teilgasvolumen (n,tr)	m³		0,0145	0,0145		0,0143	
Massenkonzentration und -strom							
gefundene Masse Formaldehyd in der Probe	μg	<	4	<	4	<	4
davon im abschließenden Ab-/Adsorber, B-Probe	μg	<	4	<	4	<	4
Absorptionsgrad, A-Probe	%		< BG = OK	<	< BG = OK	<	BG = OK
Masse, Feldblindwert	μg	<	4	<	4	<	4
bezogen auf das Teilgas volumen (n,tr)	mg/m³	<	0,3	<	0,3	<	0,3
Blindwert in Relation zum Grenzwert	%	<	1,4	<	1,4	<	1,4
Blindwert in Relation zum Messwert	%	<	100,0	<	100,0	<	100,0
Massenkonzentration (n,tr)	mg/m³	<	0,28	<	0,28	<	0,28
Hauptvolumenstrom (n,tr)	m³/h		1.440		1.440		1.440
Massenstrom	kg/h	<	0,0004	<	0,0004	<	0,0004
Feuchte im Abgas	m³/m³		0,015		0,015		0,015
Sauerstoffgehalt im Abgas	Vol%		20,67		20,77		20,76

Die Tabelle enthält gerundete Werte, somit können sich Abw eichungen zur Darstellung in Kapitel 6 ergeben.

 $n, tr \ // \ n, f = bezogen \ auf \ Normzustand \ (273 \ K, \ 1013 \ hPa), \ trockenes \ Abgas \ // \ feuchtes \ Abgas$

t,p,tr = bezogen auf Betriebszustand ohne Feuchteanteil

Luftreinhaltung

Bericht über die Durchführung von Emissionsmessungen an der Tafellackierung 4 (TLA 4) bei der thyssenkrupp Rasselstein GmbH für die Messkomponenten CO, NOx, Gesamt-C, Formaldehyd, Methylisobutylketon und O_2 , Berichts-Nr.:EuL/21271135/B

Seite 41 von 50

Tabelle Anhang: Auswertung der Staubemissionsmessungen

Tabelle Anhang: Auswertung der Staubemissionsmessungen								
Firma		Rasselstein						
Anlage		Kühlzone 1 TLA	44					
Messstelle		Kamin						
Messtag		01.07.2025	01.07.2025	01.07.2025				
Messung	Nr.	1	2	3				
Volumenstrom-Messung	Nr.	1	1	1				
Lastzustand		Volllast	Volllast	Volllast				
Messbeginn	Uhr	13:05	13:37	14:09				
Messende	Uhr	13:35	14:07	14:39				
HAUPTVOLUMENSTROM								
Temperatur (im Mittel)	°C	49	49	49				
desgleichen absolut	К	322	322	322				
Barometerstand	hPa	1009	1009	1009				
statische Druckdifferenz	hPa	0	0	0				
absoluter Druck im Kanal	hPa	1009	1009	1009				
Sauerstoffkonzentration	Vol%	20,9	20,9	20,9				
Kohlendioxidkonzentration	Vol%	0,0	0,0	0,0				
Feuchte (n,f)	m³/m³	0,090	0,090	0,090				
Wassergehalt bez. auf trockenes Abgas	g/m³	-	-	-				
Dichte (n,f)	kg/m³	1,249	1,249	1,249				
Dichte (t,p,f)	kg/m³	1,056	1,056	1,056				
Mittlerer Wurzelwert d. dyn. Drucks	√Pa	8,85	8,85	8,85				
Mittlere Gasgeschwindigkeit	m/s	10,23	10,2	10,2				
Kanalquerschnitt	m²	0,64	0,64	0,64				
Hauptvolumenstrom (t,p,f)	m³/s	6,51	6,51	6,51				
desgleichen stündlich (t,p,f)	m³/h	23.400	23.400	23.400				
bz. auf Normzustand fe.(n,f)	m³/h	19.800	19.800	19.800				
bz. auf Normzustand tr.(n,tr)	m³/h	18.000	18.000	18.000				
ABGESAUGTES TEILGASVOLUMEN								
Aktive reale Messdauer	h:mm	00:30	00:30	00:30				
Temperatur an der Gasuhr	°C	38	38	38				
statischer Druck an der Gasuhr	hPa	0	0	0				
Sondendurchmesser	mm	9	9	9				
Teilgas volumen (t,p,tr)	m³	1,077	1,078	1,089				
Korrekturfaktor der Gasuhr		0,996	0,996	0,996				
bz. auf Normzustand tr.(n,tr)	m³	0,938	0,939	0,948				
Isokinetisches Verhältnis	%	104	104	105				
MASSENKONZENTRATION- UND STROM	T							
Staubmasse, Filter	mg	< 0,3	< 0,3	< 0,3				
Staubmasse vor Filter *)	mg	- *)	- *)	- *)				
Staubmasse, gesamt	mg	< 0,30	< 0,3	< 0,3				
Gesamtleerprobe, Feldblindwert	mg	< 0,30	< 0,30	< 0,30				
bezogen auf das Teilgas volumen (n,tr)	mg/m³	< 0,32	< 0,32	< 0,32				
Blindwert in Relation zum Grenzwert	%	< 10,7	< 10,7	< 10,7				
Blindwert in Relation zum Messwert	%	< 100	< 100	< 100				
Sauerstoffgehalt im Abgas	Vol%	20,94	20,94	20,94				
Massenstrom	kg/h	< 0,006	< 0,006	< 0,006				
Staubkonzentration (n,f)	mg/m³	< 0,29	< 0,29	< 0,29				
Staubkonzentration (n,tr)	mg/m³	< 0,32	< 0,32	< 0,32				

Die Tabelle enthält gerundete Werte, somit können sich Abw eichungen zur Darstellung in Kapitel 6 ergeben.

t,p,f = Betriebszustand

t,p,tr = Gasuhrzustand nach Abgastrocknung

n,tr // n,f = bezogen auf Normzustand (273 K, 1013 hPa), trockenes Abgas // feuchtes Abgas

Seite 42 von 50

Bericht über die Durchführung von Emissionsmessungen an der Tafellackierung 4 (TLA 4) bei der thyssenkrupp Rasselstein GmbH für die Messkomponenten CO, NOx, Gesamt-C, Formaldehyd, Methylisobutylketon und O₂, Berichts-Nr.:EuL/21271135/B

Tabelle Anhang: Bestimmung der Emissionen an Formaldehyd

Firma	Rasselstein							
Anlage		Κi	ihlzone 1 TL	44				
Messstag			01.07.2025		01.07.2025		01.07.2025	
Messung Nr.			1		2		3	
Betriebszustand			Volllast		Volllast		Volllast	
Messbeginn	Uhr		13:05		13:37		14:09	
Messende	Uhr		13:35		14:07		14:39	
Abgesaugtes Teilgasvolumen								
Aktive reale Messdauer	h:mm		00:30		00:30		00:30	
Stand der Gasuhr am Ende	m³		0,0147		0,0179		0,0165	
Stand der Gasuhr am Anfang	m³		0,0000		0,0000		0,0000	
Abges. Teilgasvolumen (t,p,tr)	m³		0,0147		0,0179		0,0165	
Korrekturfaktor der Gasuhr			0,993		0,993		0,993	
Mittl. Temperatur an der Gasuhr	°C		37		38	39		
Desgl. in abs. Temperaturgraden	K		310		311		312	
Barometerstand	hPa		1009	1009		1009		
Stat. Druckdifferenz an der Gasuhr	hPa		0		0		0	
Korr. Druck an der Gasuhr	hPa		1009	1009		1009		
Abges. Teilgasvolumen (n,tr)	m³		0,0128	0,0155		0,0143		
Massenkonzentration und -strom								
gefundene Masse Formaldehyd in der Probe	μg	<	4	<	4	<	4	
davon im abschließenden Ab-/Adsorber, B-Probe	μg	<	4	<	4	<	4	
Absorptionsgrad, A-Probe	%		< BG = OK	<	< BG = OK	<	BG = OK	
Masse, Feldblindwert	μg	<	4	<	4	<	4	
bezogen auf das Teilgas volumen (n,tr)	mg/m³	<	0,3	<	0,3	<	0,3	
Blindwert in Relation zum Grenzwert	%	<	15,6	<	12,9	<	14,0	
Blindwert in Relation zum Messwert	%	<	100,0	<	100,0	<	100,0	
Massenkonzentration (n,tr)	mg/m³	<	0,31	<	0,26	<	0,28	
Hauptvolumenstrom (n,tr)	m³/h		18.000		18.000		18.000	
Massenstrom	kg/h	<	0,006	<	0,005	<	0,005	
Feuchte im Abgas	m³/m³		0,090		0,090		0,090	
Sauerstoffgehalt im Abgas	Vol%		20,94		20,94		20,94	

Die Tabelle enthält gerundete Werte, somit können sich Abw eichungen zur Darstellung in Kapitel 6 ergeben.

t,p,tr = bezogen auf Betriebszustand ohne Feuchteanteil

 $n, tr \ // \ n, f = bezogen \ auf \ Normzustand \ (273 \ K, \ 1013 \ hPa), \ trockenes \ Abgas \ // \ feuchtes \ Abgas$

Luftreinhaltung

Bericht über die Durchführung von Emissionsmessungen an der Tafellackierung 4 (TLA 4) bei der thyssenkrupp Rasselstein GmbH für die Messkomponenten CO, NOx, Gesamt-C, Formaldehyd, Methylisobutylketon und O_2 , Berichts-Nr.:EuL/21271135/B

Seite 43 von 50

Tabelle Anhang: Bestimmung der Emissionen an Methylisobutylketon

Firma		Ra	asselstein				
Anlage		Κί	ühlzone 1 TL	\ 4			
Messstag			01.07.2025		01.07.2025		01.07.2025
Messung Nr.			1		2		3
Betriebszustand			Volllast		Volllast		Volllast
Messbeginn	Uhr		13:05		13:37		14:09
Messende	Uhr		13:35		14:07		14:39
Abgesaugtes Teilgasvolumen							
Aktive reale Messdauer	h:mm		00:30		00:30		00:30
Stand der Gasuhr am Ende	m³		0,0147		0,0179		0,0165
Stand der Gasuhr am Anfang	m³		0,0000		0,0000		0,0000
Abges. Teilgasvolumen (t,p,tr)	m³		0,0147		0,0179		0,0165
Korrekturfaktor der Gasuhr			0,993		0,993		0,993
Mittl. Temperatur an der Gasuhr	°C		37		38	39	
Desgl. in abs. Temperaturgraden	K		310	311		312	
Barometerstand	hPa		1009	1009		1009	
Stat. Druckdifferenz an der Gasuhr	hPa		0		0		0
Korr. Druck an der Gasuhr	hPa		1009	1009		1009	
Abges. Teilgasvolumen (n,tr)	m³		0,0128	0,0155		0,0143	
Massenkonzentration und -strom							
gefundene Masse Formaldehyd in der Probe	μg	<	4	<	4	٧	4
davon im abschließenden Ab-/Adsorber, B-Probe	μg	<	4	<	4	<	4
Absorptionsgrad, A-Probe	%		< BG = OK	<	< BG = OK	<	BG = OK
Masse, Feldblindwert	μg	<	4	<	4	<	4
bezogen auf das Teilgas volumen (n,tr)	mg/m³	<	0,3	<	0,3	<	0,3
Blindwert in Relation zum Grenzwert	%	<	1,6	<	1,3	<	1,4
Blindwert in Relation zum Messwert	%	<	100,0	<	100,0	<	100,0
Massenkonzentration (n,tr)	mg/m³	<	0,31	<	0,26	<	0,28
Hauptvolumenstrom (n,tr)	m³/h		18.000		18.000		18.000
Massenstrom	kg/h	<	0,006	<	0,005	<	0,005
Feuchte im Abgas	m³/m³		0,090		0,090		0,090
Sauerstoffgehalt im Abgas	Vol%		20,94		20,94		20,94

Die Tabelle enthält gerundete Werte, somit können sich Abw eichungen zur Darstellung in Kapitel 6 ergeben.

t,p,tr = bezogen auf Betriebszustand ohne Feuchteanteil

Seite 44 von 50

Bericht über die Durchführung von Emissionsmessungen an der Tafellackierung 4 (TLA 4) bei der thyssenkrupp Rasselstein GmbH für die Messkomponenten CO, NOx, Gesamt-C, Formaldehyd, Methylisobutylketon und O₂, Berichts-Nr.:EuL/21271135/B

Tabelle Anhang: Auswertung der Staubemissionsmessungen

Firma		Rasselstein		
Anlage		Kühlzone 2 TLA	₩	
Messstelle		Kamin		
Messtag		01.07.2025	01.07.2025	01.07.2025
Messung	Nr.	1	2	3
Volumenstrom-Messung	Nr.	1	1	1
Lastzustand		Volllast	Volllast	Volllast
Messbeginn	Uhr	10:47	11:20	11:55
Messende	Uhr	11:17	11:50	12:25
HAUPTVOLUMENSTROM	•			
Temperatur (im Mittel)	°C	48	48	48
desgleichen absolut	K	321	321	321
Barometerstand	hPa	1009	1009	1009
statische Druckdifferenz	hPa	0	0	0
absoluter Druck im Kanal	hPa	1009	1009	1009
Sauerstoffkonzentration	Vol%	20,9	20,9	20,9
Kohlendioxidkonzentration	Vol%	0,0	0,0	0,0
Feuchte (n,f)	m³/m³	0,090	0,090	0,090
Wassergehalt bez. auf trockenes Abgas	g/m³	-	-	-
Dichte (n,f)	kg/m³	1,249	1,249	1,249
Dichte (t,p,f)	kg/m³	1,058	1,058	1,058
Mittlerer Wurzelwert d. dyn. Drucks	√Pa	8,58	8,58	8,58
Mittlere Gasgeschwindigkeit	m/s	9,91	9,9	9,9
Kanalquerschnitt	m²	0,64	0,64	0,64
Hauptvolumenstrom (t,p,f)	m³/s	6,31	6,31	
desgleichen stündlich (t,p,f)	m³/h	22.700	22.700	6,31 22.700
bz. auf Normzustand fe.(n,f)	m³/h	19.200	19.200	19.200
bz. auf Normzustand tr.(n,tr)	m³/h	17.500	17.500	17.500
	1111 /11	17.500	17.500	17.500
ABGESAUGTES TEILGASVOLUMEN		00.20	00.20	00:30
Aktive reale Messdauer	h:mm °C	00:30	00:30	
Temperatur an der Gasuhr		38	38	38
statischer Druck an der Gasuhr	hPa	9	9	9
Sondendurchmesser	mm			
Teilgasvolumen (t,p,tr)	m³	1,09	1,09	1,089
Korrekturfaktor der Gasuhr	3	0,996	0,996	0,996
bz. auf Normzustand tr.(n,tr)	m³ %	0,949	0,949	0,948
Isokinetisches Verhältnis	70	108	108	108
MASSENKONZENTRATION- UND STROM	T	0.4	0.5	0.4
Staubmasse, Filter	mg	0,4	0,5	0,4
Staubmasse vor Filter *)	mg	-*)	- *)	-*)
Staubmasse, gesamt	mg	0,42	0,5	0,4
Gesamtleerprobe, Feldblindwert	mg	< 0,30	< 0,30	< 0,30
bezogen auf das Teilgasvolumen (n,tr)	mg/m³	< 0,32	< 0,32	< 0,32
Blindwert in Relation zum Grenzwert	%	< 10,7	< 10,7	< 10,7
Blindwert in Relation zum Messwert	%	< 71	< 67	< 71
Sauerstoffgehalt im Abgas	Vol%	20,94	20,94	20,94
Massenstrom	kg/h	0,008	0,008	0,008
Staubkonzentration (n,f)	mg/m³	0,40	0,43	0,40
Staubkonzentration (n,tr)	mg/m³	0,44	0,47	0,44

Die Tabelle enthält gerundete Werte, somit können sich Abw eichungen zur Darstellung in Kapitel 6 ergeben.

t,p,f = Betriebszustand

t,p,tr = Gasuhrzustand nach Abgastrocknung

Luftreinhaltung

Bericht über die Durchführung von Emissionsmessungen an der Tafellackierung 4 (TLA 4) bei der thyssenkrupp Rasselstein GmbH für die Messkomponenten CO, NOx, Gesamt-C, Formaldehyd, Methylisobutylketon und O_2 , Berichts-Nr.:EuL/21271135/B

Seite 45 von 50

Tabelle Anhang: Bestimmung der Emissionen an Formaldehyd

Firma		Ra	asselstein					
Anlage		Κί	ihlzone 2 TL/	₩				
Messstag			01.07.2025		01.07.2025		01.07.2025	
Messung Nr.			1		2		3	
Betriebszustand			Volllast		Volllast		Volllast	
Messbeginn	Uhr		10:47		11:20		11:55	
Messende	Uhr		11:17		11:50		12:25	
Abgesaugtes Teilgas volumen								
Aktive reale Messdauer	h:mm		00:30		00:30		00:30	
Stand der Gasuhr am Ende	m³		0,0173		0,0157		0,0150	
Stand der Gasuhr am Anfang	m³		0,0000		0,0000		0,0000	
Abges. Teilgasvolumen (t,p,tr)	m³		0,0173		0,0157		0,0150	
Korrekturfaktor der Gasuhr			0,993		0,993		0,993	
Mittl. Temperatur an der Gasuhr	°C		37		38		39	
Desgl. in abs. Temperaturgraden	K		310	311		312		
Barometerstand	hPa		1009	1009		1009		
Stat. Druckdifferenz an der Gasuhr	hPa		0	0			0	
Korr. Druck an der Gasuhr	hPa		1009	1009		1009		
Abges. Teilgasvolumen (n,tr)	m³		0,0150	0,0136		0,0130		
Massenkonzentration und -strom								
gefundene Masse Formaldehyd in der Probe	μg	<	4	<	4	<	4	
davon im abschließenden Ab-/Adsorber, B-Probe	μg	<	4	<	4	<	4	
Absorptionsgrad, A-Probe	%		< BG = OK	•	< BG = OK	<	BG = OK	
Masse, Feldblindwert	μg	<	4	<	4	<	4	
bezogen auf das Teilgas volumen (n,tr)	mg/m³	<	0,3	<	0,3	<	0,3	
Blindwert in Relation zum Grenzwert	%	<	13,3	<	14,7	<	15,4	
Blindwert in Relation zum Messwert	%	<	100,0	<	100,0	<	100,0	
Massenkonzentration (n,tr)	mg/m³	<	0,27	<	0,29	<	0,31	
Hauptvolumenstrom (n,tr)	m³/h		17.500		17.500		17.500	
Massenstrom	kg/h	<	0,005	<	0,005	<	0,005	
Feuchte im Abgas	m³/m³		0,090		0,090		0,090	
Sauerstoffgehalt im Abgas	Vol%		20,94		20,94		20,94	

Die Tabelle enthält gerundete Werte, somit können sich Abw eichungen zur Darstellung in Kapitel 6 ergeben.

t,p,tr = bezogen auf Betriebszustand ohne Feuchteanteil

Seite 46 von 50

Bericht über die Durchführung von Emissionsmessungen an der Tafellackierung 4 (TLA 4) bei der thyssenkrupp Rasselstein GmbH für die Messkomponenten CO, NOx, Gesamt-C, Formaldehyd, Methylisobutylketon und O₂, Berichts-Nr.:EuL/21271135/B

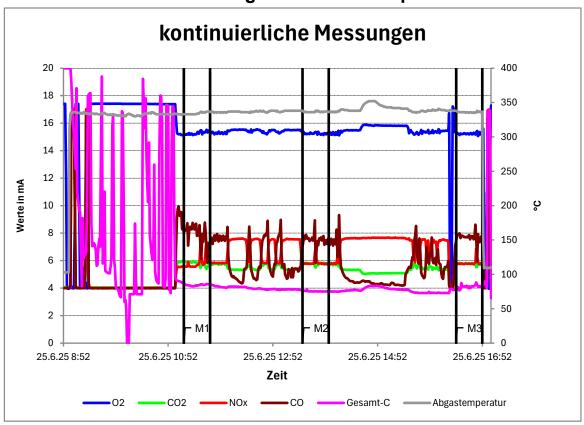
Tabelle Anhang: Bestimmung der Emissionen an Methylisobutylketon

Describition						
	Κί		_			
		01.07.2025	01.07.2025			01.07.2025
		1		2		3
		Volllast		Volllast		Volllast
Uhr		10:47		11:20		11:55
Uhr		11:17		11:50		12:25
h:mm		00:30		00:30		00:30
m³		0,0173		0,0157		0,0150
m³		0,0000		0,0000		0,0000
m³		0,0173		0,0157		0,0150
		0,993		0,993		0,993
°C		37		38	39	
K		310	311		312	
hPa		1009	1009		1009	
hPa		0	0		0	
hPa		1009	1009		1009	
m³		0,0150	0,0136		0,0130	
μg	<	4	<	4	<	4
μg	<	4	<	4	<	4
%		< BG = OK	<	BG = OK	<	BG = OK
μg	<	4	<	4	<	4
mg/m³	<	0,3	<	0,3	<	0,3
%	<	1,3	<	1,5	<	1,5
%	<	100,0	<	100,0	<	100,0
mg/m³	<	0,27	<	0,29	<	0,31
m³/h		17.500		17.500		17.500
kg/h	<	0,005	<	0,005	<	0,005
m³/m³		0,090		0,090		0,090
Vol%		20,94		20,94		20,94
	h:mm m³ m³ m° c K hPa hPa hPa m³ µg µg g mg/m³ % mg/m³ kg/h m³/m³	Ki C C C C C C C C C	01.07.2025 1 Volllast Uhr 10:47 Uhr 11:17 h:mm 00:30 m³ 0,0173 m³ 0,0000 m³ 0,0173 0,993 °C 37 K 310 hPa 1009 hPa 1009 hPa 1009 m³ 0,0150 Pa 4 µg 4 µg 4 % < BG = OK µg 4 mg/m³ 0,3 % < 1,3 % < 100,0 mg/m³ 0,27 m³/h 17.500 kg/h < 0,005 m³/m³ 0,090	Kühlzone 2 TLA4 01.07.2025 1 Volllast Uhr 10:47 Uhr 11:17 h:mm 00:30 m³ 0,0173 m³ 0,0000 m³ 0,0173 o.993 °C °C 37 K 310 hPa 1009 hPa 0 4 4 % 8G = OK µg 4 % 1,3 % 1,3 % 1,3 % 1,3 % 1,3 % 1,3	Kühlzone 2 TLA4 01.07.2025 01.07.2025 1 2 Volllast Volllast Uhr 10:47 11:20 Uhr 11:17 11:50 h:mm 00:30 00:30 m³ 0,0173 0,0157 m³ 0,0000 0,0000 m³ 0,0173 0,0157 0,993 0,993 0,993 °C 37 38 K 310 311 hPa 1009 1009 hPa 0 0 hPa 0 0 hPa 1009 1009 m³ 0,0150 0,0136 µg 4 4 µg 4 <td< td=""><td>Kühlzone 2 TLA4 01.07.2025 01.07.2025 1 2 Volllast Volllast Uhr 10:47 11:20 Uhr 11:17 11:50 h:mm 00:30 00:30 m³ 0,0173 0,0157 m³ 0,0000 0,0000 m³ 0,0173 0,0157 0,993 0,993 0,993 °C 37 38 K 310 311 hPa 1009 1009 hPa 0 0 hPa 0 0 hPa 1009 1009 m³ 0,0150 0,0136 pg 4 4 4 pg</td></td<>	Kühlzone 2 TLA4 01.07.2025 01.07.2025 1 2 Volllast Volllast Uhr 10:47 11:20 Uhr 11:17 11:50 h:mm 00:30 00:30 m³ 0,0173 0,0157 m³ 0,0000 0,0000 m³ 0,0173 0,0157 0,993 0,993 0,993 °C 37 38 K 310 311 hPa 1009 1009 hPa 0 0 hPa 0 0 hPa 1009 1009 m³ 0,0150 0,0136 pg 4 4 4 pg

Die Tabelle enthält gerundete Werte, somit können sich Abw eichungen zur Darstellung in Kapitel 6 ergeben.

 $n, tr \ // \ n, f = bezogen \ auf \ Normzustand \ (273 \ K, \ 1013 \ hPa), \ trockenes \ Abgas \ // \ feuchtes \ Abgas$

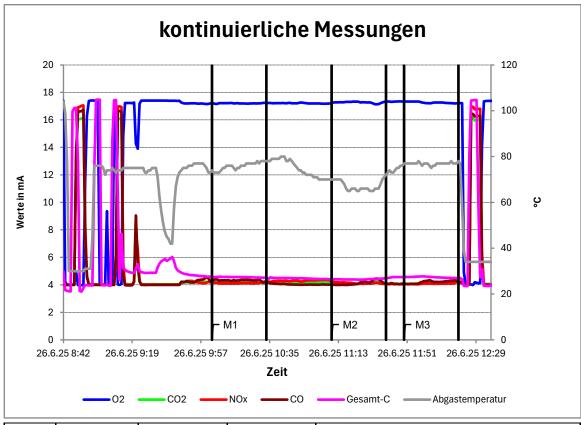
t,p,tr = bezogen auf Betriebszustand ohne Feuchteanteil


TÜV Rheinland Energy & Environment GmbH Luftreinhaltung

Bericht über die Durchführung von Emissionsmessungen an der Tafellackierung 4 (TLA 4) bei der thyssenkrupp Rasselstein GmbH für die Messkomponenten CO, NOx, Gesamt-C, Formaldehyd, Methylisobutylketon und O_2 , Berichts-Nr.:EuL/21271135/B

Seite 47 von 50

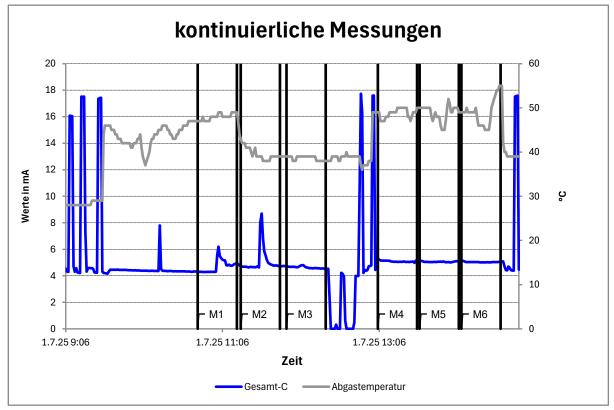
Anhang A3: Grafische Darstellung des zeitlichen Verlaufs kontinuierlich gemessener Komponenten


Während der Kalibrierung ist der FID ausgefallen, dies erklärt den Wert von 0 mA. Anschließend wurde die Kalibrierung erneut durchgeführt.

Nr.	Messung	von	bis	Betrieb
1	M1	11:10	11:40	TNV TLA 4
2	M2	13:26	13:56	TNV TLA 4
3	М3	16:22	16:52	TNV TLA 4

Seite 48 von 50

Bericht über die Durchführung von Emissionsmessungen an der Tafellackierung 4 (TLA 4) bei der thyssenkrupp Rasselstein GmbH für die Messkomponenten CO, NOx, Gesamt-C, Formaldehyd, Methylisobutylketon und O₂, Berichts-Nr.:EuL/21271135/B


Nr.	Messung	von	bis	Betrieb
1	M1	10:04	10:34	Drahtrahmenvorwärmung TLA 4
2	M2	11:10	11:40	Drahtrahmenvorwärmung TLA 4
3	М3	11:50	12:20	Drahtrahmenvorwärmung TLA 4

Luftreinhaltung

Bericht über die Durchführung von Emissionsmessungen an der Tafellackierung 4 (TLA 4) bei der thyssenkrupp Rasselstein GmbH für die Messkomponenten CO, NOx, Gesamt-C, Formaldehyd, Methylisobutylketon und O_2 , Berichts-Nr.:EuL/21271135/B

Seite 49 von 50

Nr.	Messung	von	bis	Betrieb
1	M1	10:47	11:17	Kühlabluft 2
2	M2	11:20	11:50	Kühlabluft 2
3	М3	11:55	12:25	Kühlabluft 2
4	M4	13:05	13:35	Kühlabluft 1
5	M5	13:37	14:07	Kühlabluft 1
6	M6	14:09	14:39	Kühlabluft 1

Luftreinhaltung

Seite 50 von 50

Bericht über die Durchführung von Emissionsmessungen an der Tafellackierung 4 (TLA 4) bei der thyssenkrupp Rasselstein GmbH für die Messkomponenten CO, NOx, Gesamt-C, Formaldehyd, Methylisobutylketon und O₂, Berichts-Nr.:EuL/21271135/B

Anhang A4: Abkürzungen

Abkürzungen

CO Kohlenmonoxid

NO_X Stickstoffmonoxid und -dioxid, angegeben als Stickstoffdioxid

 $\begin{array}{ccc} O_2 & Sauerstoff \\ CO_2 & Kohlendioxid \\ Gesamt-C & Gesamtkohlenstoff \\ Staub & Gesamtstaub \\ HCHO & Formaldehyd \end{array}$